Multisource Heterogeneous Domain Adaptation With Conditional Weighting Adversarial Network

加权 鉴别器 条件概率分布 计算机科学 域适应 人工智能 分类器(UML) 对抗制 特征(语言学) 数据挖掘 机器学习 模式识别(心理学) 领域(数学分析) 数学 统计 放射科 数学分析 哲学 探测器 电信 医学 语言学
作者
Yuan Yao,Xutao Li,Yu Zhang,Yunming Ye
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (4): 2079-2092 被引量:13
标识
DOI:10.1109/tnnls.2021.3105868
摘要

Heterogeneous domain adaptation (HDA) tackles the learning of cross-domain samples with both different probability distributions and feature representations. Most of the existing HDA studies focus on the single-source scenario. In reality, however, it is not uncommon to obtain samples from multiple heterogeneous domains. In this article, we study the multisource HDA problem and propose a conditional weighting adversarial network (CWAN) to address it. The proposed CWAN adversarially learns a feature transformer, a label classifier, and a domain discriminator. To quantify the importance of different source domains, CWAN introduces a sophisticated conditional weighting scheme to calculate the weights of the source domains according to the conditional distribution divergence between the source and target domains. Different from existing weighting schemes, the proposed conditional weighting scheme not only weights the source domains but also implicitly aligns the conditional distributions during the optimization process. Experimental results clearly demonstrate that the proposed CWAN performs much better than several state-of-the-art methods on four real-world datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
研友_VZG7GZ应助clear采纳,获得10
2秒前
3秒前
ZZzz发布了新的文献求助10
4秒前
酷波er应助跳跃的太君采纳,获得10
4秒前
waynechang发布了新的文献求助30
5秒前
6秒前
6秒前
CipherSage应助zhangzhangzhang采纳,获得10
6秒前
wang完成签到,获得积分10
7秒前
ylj1531585955发布了新的文献求助10
7秒前
7秒前
VV完成签到 ,获得积分10
8秒前
乐乐应助李一意采纳,获得10
8秒前
赘婿应助科研通管家采纳,获得10
8秒前
里lilili应助科研通管家采纳,获得10
8秒前
8秒前
shinysparrow应助科研通管家采纳,获得80
9秒前
搜集达人应助科研通管家采纳,获得10
9秒前
Ava应助科研通管家采纳,获得10
9秒前
wang发布了新的文献求助10
9秒前
爱吃包子应助科研通管家采纳,获得20
9秒前
852应助科研通管家采纳,获得10
9秒前
薰硝壤应助科研通管家采纳,获得30
9秒前
Yziii应助科研通管家采纳,获得20
9秒前
酷波er应助科研通管家采纳,获得10
10秒前
田様应助科研通管家采纳,获得10
10秒前
研友_LwX4vn完成签到,获得积分10
10秒前
Lucas应助科研通管家采纳,获得10
10秒前
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
我是老大应助科研通管家采纳,获得10
10秒前
CodeCraft应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
慕青应助科研通管家采纳,获得10
11秒前
wanci应助科研通管家采纳,获得10
11秒前
深情安青应助科研通管家采纳,获得10
11秒前
英俊的铭应助科研通管家采纳,获得10
11秒前
11秒前
Osiris发布了新的文献求助10
11秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3055219
求助须知:如何正确求助?哪些是违规求助? 2711930
关于积分的说明 7429296
捐赠科研通 2356744
什么是DOI,文献DOI怎么找? 1248265
科研通“疑难数据库(出版商)”最低求助积分说明 606677
版权声明 596083