已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Boundary-Aware Transformers for Skin Lesion Segmentation

计算机科学 分割 变压器 人工智能 图像分割 皮肤损伤 模式识别(心理学)
作者
Jiacheng Wang,Lan Wei,Liansheng Wang,Qichao Zhou,Lei Zhu,Jing Qin
出处
期刊:Lecture Notes in Computer Science 卷期号:: 206-216
标识
DOI:10.1007/978-3-030-87193-2_20
摘要

Skin lesion segmentation from dermoscopy images is of great importance for improving the quantitative analysis of skin cancer. However, the automatic segmentation of melanoma is a very challenging task owing to the large variation of melanoma and ambiguous boundaries of lesion areas. While convolutional neutral networks (CNNs) have achieved remarkable progress in this task, most of existing solutions are still incapable of effectively capturing global dependencies to counteract the inductive bias caused by limited receptive fields. Recently, transformers have been proposed as a promising tool for global context modeling by employing a powerful global attention mechanism, but one of their main shortcomings when applied to segmentation tasks is that they cannot effectively extract sufficient local details to tackle ambiguous boundaries. We propose a novel boundary-aware transformer (BAT) to comprehensively address the challenges of automatic skin lesion segmentation. Specifically, we integrate a new boundary-wise attention gate (BAG) into transformers to enable the whole network to not only effectively model global long-range dependencies via transformers but also, simultaneously, capture more local details by making full use of boundary-wise prior knowledge. Particularly, the auxiliary supervision of BAG is capable of assisting transformers to learn position embedding as it provides much spatial information. We conducted extensive experiments to evaluate the proposed BAT and experiments corroborate its effectiveness, consistently outperforming state-of-the-art methods in two famous datasets (Code is available at https://github.com/jcwang123/BA-Transformer).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lmy完成签到 ,获得积分10
2秒前
小彭发布了新的文献求助20
2秒前
3秒前
4秒前
友好大树完成签到,获得积分10
6秒前
7秒前
hajy发布了新的文献求助10
7秒前
生动雁发布了新的文献求助10
7秒前
小彭完成签到,获得积分10
13秒前
Steven完成签到 ,获得积分10
13秒前
苏卿应助暴走的烤包子采纳,获得10
15秒前
22秒前
123321完成签到 ,获得积分10
22秒前
能干的阿拉蕾完成签到 ,获得积分10
24秒前
24秒前
友好大树发布了新的文献求助10
24秒前
婷123完成签到 ,获得积分10
24秒前
杨枝甘露发布了新的文献求助10
25秒前
26秒前
HEATHERJJ发布了新的文献求助10
27秒前
艾克关注了科研通微信公众号
29秒前
30秒前
HuLL完成签到 ,获得积分10
31秒前
小二郎应助安德森先生采纳,获得20
34秒前
wyw完成签到 ,获得积分10
34秒前
37秒前
FunHigh完成签到 ,获得积分10
38秒前
39秒前
39秒前
科研通AI5应助科研通管家采纳,获得10
39秒前
YJM应助科研通管家采纳,获得10
39秒前
口香糖探长关注了科研通微信公众号
40秒前
hhhhhhhhhh完成签到 ,获得积分10
40秒前
gxl完成签到,获得积分10
40秒前
万木春完成签到 ,获得积分10
41秒前
上官若男应助虚幻的土豆采纳,获得10
41秒前
42秒前
充电宝应助LONG采纳,获得10
43秒前
Seeking完成签到,获得积分10
44秒前
HEATHERJJ完成签到,获得积分20
46秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555605
求助须知:如何正确求助?哪些是违规求助? 3131310
关于积分的说明 9390527
捐赠科研通 2830903
什么是DOI,文献DOI怎么找? 1556204
邀请新用户注册赠送积分活动 726475
科研通“疑难数据库(出版商)”最低求助积分说明 715803