兴奋剂
机制(生物学)
降级(电信)
阿霉素
碳纤维
石墨
材料科学
化学工程
纳米技术
冶金
光电子学
电子工程
复合材料
医学
物理
内科学
工程类
复合数
化疗
量子力学
作者
Haoyang Fu,Ruizhao Wang,Qianyu Xu,Minwang Laipan,Chenliu Tang,Wei‐xian Zhang,Lan Ling
标识
DOI:10.1016/j.apcatb.2021.120686
摘要
Typical antineoplastic agent doxorubicin (DOX) contamination is a major environmental concern and its efficient purification remains a daunting challenge so far. This work explored the potential of Fe/Pd-doped graphite carbon nitride (g-C3N4@Fe/Pd) for DOX removal from water, involving the removal performance, mechanism, and pathway. Structural characterization of g-C3N4@Fe/Pd showed that the metallic Pd clusters are decorated on the surface of uniformly distributed iron nanoparticles (~ 28 nm) on g-C3N4. The existence of g-C3N4 effectively relieved the agglomeration and overgrowth of iron nanoparticles, the strong coupling effect among the Fe, Pd and N demonstrates the excellent DOX removal performance (k = 0.115 min−1) with versatility under different initial concentrations (30–150 mg/L) and material dosages (0.1–0.4 g/L). Three possible degradation pathways of DOX were proposed, where catalytic saccharide moiety elimination is the primary pathway. Importantly, intermediates exhibit lower toxicity and the final degradation product is efficiently adsorbed by g-C3N4@Fe/Pd.
科研通智能强力驱动
Strongly Powered by AbleSci AI