亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A neural network with encoded visible edge prior for limited‐angle computed tomography reconstruction

先验概率 平滑的 迭代重建 计算机科学 人工智能 正规化(语言学) 算法 计算机视觉 卷积神经网络 贝叶斯概率
作者
Genwei Ma,Yinghui Zhang,Xing Zhao,Tong Wang,Hongwei Li
出处
期刊:Medical Physics [Wiley]
卷期号:48 (10): 6464-6481 被引量:6
标识
DOI:10.1002/mp.15205
摘要

Limited-angle computed tomography is a challenging but important task in certain medical and industrial applications for nondestructive testing. The limited-angle reconstruction problem is highly ill-posed and conventional reconstruction algorithms would introduce heavy artifacts. Various models and methods have been proposed to improve the quality of reconstructions by introducing different priors regarding to the projection data or ideal images. However, the assumed priors might not be practically applicable to all limited-angle reconstruction problems. Convolutional neural network (CNN) exhibits great promise in the modeling of data coupling and has recently become an important technique in medical imaging applications. Although existing CNN methods have demonstrated promising results, their robustness is still a concern. In this paper, in light of the theory of visible and invisible boundaries, we propose an alternating edge-preserving diffusion and smoothing neural network (AEDSNN) for limited-angle reconstruction that builds the visible boundaries as priors into its structure. The proposed method generalizes the alternating edge-preserving diffusion and smoothing (AEDS) method for limited-angle reconstruction developed in the literature by replacing its regularization terms by CNNs, by which the piecewise constant assumption assumed by AEDS is effectively relaxed.The AEDSNN is derived by unrolling the AEDS algorithm. AEDSNN consists of several blocks, and each block corresponds to one iteration of the AEDS algorithm. In each iteration of the AEDS algorithm, three subproblems are sequentially solved. So, each block of AEDSNN possesses three main layers: data matching layer, x -direction regularization layer for visible edges diffusion, and y -direction regularization layer for artifacts suppressing. The data matching layer is implemented by conventional ordered-subset simultaneous algebraic reconstruction technique (OS-SART) reconstruction algorithm, while the two regularization layers are modeled by CNNs for more intelligent and better encoding of priors regarding to the reconstructed images. To further strength the visible edge prior, the attention mechanism and the pooling layers are incorporated into AEDSNN to facilitate the procedure of edge-preserving diffusion from visible edges.We have evaluated the performance of AEDSNN by comparing it with popular algorithms for limited-angle reconstruction. Experiments on the medical dataset show that the proposed AEDSNN effectively breaks through the piecewise constant assumption usually assumed by conventional reconstruction algorithms, and works much better for piecewise smooth images with nonsharp edges. Experiments on the printed circuit board (PCB) dataset show that AEDSNN can better encode and utilize the visible edge prior, and its reconstructions are consistently better compared to the competing algorithms.A deep-learning approach for limited-angle reconstruction is proposed in this paper, which significantly outperforms existing methods. The superiority of AEDSNN consists of three aspects. First, by the virtue of CNN, AEDSNN is free of parameter-tuning. This is a great facility compared to conventional reconstruction methods; Second, AEDSNN is quite fast. Conventional reconstruction methods usually need hundreds even thousands of iterations, while AEDSNN just needs three to five iterations (i.e., blocks); Third, the learned regularizer by AEDSNN enjoys a broader application capacity, which could work well with piecewise smooth images and surpass the piecewise constant assumption frequently assumed for computed tomography images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
英姑应助科研通管家采纳,获得10
5秒前
Tobby发布了新的文献求助20
11秒前
时间煮雨我煮鱼完成签到,获得积分10
14秒前
Tobby完成签到,获得积分10
21秒前
Voyager发布了新的文献求助10
52秒前
1分钟前
咸鱼lmye发布了新的文献求助10
1分钟前
1分钟前
咸鱼lmye完成签到 ,获得积分20
1分钟前
wyz完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
ding应助科研通管家采纳,获得10
2分钟前
Voyager发布了新的文献求助50
2分钟前
2分钟前
2分钟前
领导范儿应助老橘子采纳,获得30
3分钟前
3分钟前
堪冥发布了新的文献求助10
3分钟前
Rebeccaiscute完成签到 ,获得积分10
3分钟前
堪冥完成签到,获得积分20
3分钟前
cy0824完成签到 ,获得积分10
3分钟前
Lucas应助沉默的倔驴采纳,获得30
3分钟前
量子星尘发布了新的文献求助10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
科研通AI6.1应助清雨采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
清雨发布了新的文献求助10
4分钟前
陳.发布了新的文献求助10
4分钟前
斯文败类应助陳.采纳,获得10
4分钟前
搜集达人应助陳.采纳,获得10
4分钟前
完美世界应助陳.采纳,获得10
4分钟前
情怀应助陳.采纳,获得10
4分钟前
情怀应助陳.采纳,获得10
4分钟前
科研通AI2S应助陳.采纳,获得10
4分钟前
领导范儿应助陳.采纳,获得10
4分钟前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746872
求助须知:如何正确求助?哪些是违规求助? 5439957
关于积分的说明 15355990
捐赠科研通 4886836
什么是DOI,文献DOI怎么找? 2627476
邀请新用户注册赠送积分活动 1575917
关于科研通互助平台的介绍 1532711