A neural network with encoded visible edge prior for limited‐angle computed tomography reconstruction

先验概率 平滑的 迭代重建 计算机科学 人工智能 正规化(语言学) 算法 计算机视觉 卷积神经网络 贝叶斯概率
作者
Genwei Ma,Yinghui Zhang,Xing Zhao,Tong Wang,Hongwei Li
出处
期刊:Medical Physics [Wiley]
卷期号:48 (10): 6464-6481 被引量:6
标识
DOI:10.1002/mp.15205
摘要

Limited-angle computed tomography is a challenging but important task in certain medical and industrial applications for nondestructive testing. The limited-angle reconstruction problem is highly ill-posed and conventional reconstruction algorithms would introduce heavy artifacts. Various models and methods have been proposed to improve the quality of reconstructions by introducing different priors regarding to the projection data or ideal images. However, the assumed priors might not be practically applicable to all limited-angle reconstruction problems. Convolutional neural network (CNN) exhibits great promise in the modeling of data coupling and has recently become an important technique in medical imaging applications. Although existing CNN methods have demonstrated promising results, their robustness is still a concern. In this paper, in light of the theory of visible and invisible boundaries, we propose an alternating edge-preserving diffusion and smoothing neural network (AEDSNN) for limited-angle reconstruction that builds the visible boundaries as priors into its structure. The proposed method generalizes the alternating edge-preserving diffusion and smoothing (AEDS) method for limited-angle reconstruction developed in the literature by replacing its regularization terms by CNNs, by which the piecewise constant assumption assumed by AEDS is effectively relaxed.The AEDSNN is derived by unrolling the AEDS algorithm. AEDSNN consists of several blocks, and each block corresponds to one iteration of the AEDS algorithm. In each iteration of the AEDS algorithm, three subproblems are sequentially solved. So, each block of AEDSNN possesses three main layers: data matching layer, x -direction regularization layer for visible edges diffusion, and y -direction regularization layer for artifacts suppressing. The data matching layer is implemented by conventional ordered-subset simultaneous algebraic reconstruction technique (OS-SART) reconstruction algorithm, while the two regularization layers are modeled by CNNs for more intelligent and better encoding of priors regarding to the reconstructed images. To further strength the visible edge prior, the attention mechanism and the pooling layers are incorporated into AEDSNN to facilitate the procedure of edge-preserving diffusion from visible edges.We have evaluated the performance of AEDSNN by comparing it with popular algorithms for limited-angle reconstruction. Experiments on the medical dataset show that the proposed AEDSNN effectively breaks through the piecewise constant assumption usually assumed by conventional reconstruction algorithms, and works much better for piecewise smooth images with nonsharp edges. Experiments on the printed circuit board (PCB) dataset show that AEDSNN can better encode and utilize the visible edge prior, and its reconstructions are consistently better compared to the competing algorithms.A deep-learning approach for limited-angle reconstruction is proposed in this paper, which significantly outperforms existing methods. The superiority of AEDSNN consists of three aspects. First, by the virtue of CNN, AEDSNN is free of parameter-tuning. This is a great facility compared to conventional reconstruction methods; Second, AEDSNN is quite fast. Conventional reconstruction methods usually need hundreds even thousands of iterations, while AEDSNN just needs three to five iterations (i.e., blocks); Third, the learned regularizer by AEDSNN enjoys a broader application capacity, which could work well with piecewise smooth images and surpass the piecewise constant assumption frequently assumed for computed tomography images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
空山新雨发布了新的文献求助10
1秒前
WSYang完成签到,获得积分10
1秒前
2秒前
阎梦凡完成签到,获得积分10
3秒前
爱炸鸡也爱烧烤完成签到 ,获得积分10
3秒前
卡卡完成签到 ,获得积分10
4秒前
yang完成签到,获得积分20
6秒前
Ava应助城寨招牌叉烧饭采纳,获得10
8秒前
8秒前
halosheep发布了新的文献求助30
8秒前
10秒前
封尘逸动发布了新的文献求助10
11秒前
yudiao完成签到,获得积分20
12秒前
14秒前
搜集达人应助yang采纳,获得10
16秒前
awwwer发布了新的文献求助10
18秒前
Noah完成签到,获得积分10
20秒前
机灵的蚂蚁完成签到,获得积分10
21秒前
锦诗完成签到,获得积分10
21秒前
yoyo20012623完成签到,获得积分10
23秒前
23秒前
25秒前
25秒前
高高的茉莉完成签到,获得积分10
25秒前
量子星尘发布了新的文献求助10
26秒前
27秒前
27秒前
Arpeggione关注了科研通微信公众号
28秒前
28秒前
吴仁杰发布了新的文献求助10
29秒前
niuma发布了新的文献求助20
29秒前
CY发布了新的文献求助10
29秒前
30秒前
搞怪世德发布了新的文献求助10
30秒前
shinysparrow举报慕明花开求助涉嫌违规
30秒前
31秒前
如泣草芥完成签到,获得积分0
31秒前
李晨晨发布了新的文献求助20
32秒前
33秒前
33秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979916
求助须知:如何正确求助?哪些是违规求助? 3524003
关于积分的说明 11219349
捐赠科研通 3261424
什么是DOI,文献DOI怎么找? 1800654
邀请新用户注册赠送积分活动 879239
科研通“疑难数据库(出版商)”最低求助积分说明 807214