石墨烯纳米带
石墨烯
材料科学
碳纳米管
光电子学
晶体管
带隙
场效应晶体管
纳米技术
电气工程
工程类
电压
作者
Changxin Chen,Yu Lin,Wu Zhou,Ming Gong,Zhuoyang He,Fangyuan Shi,Xinyue Li,Justin Z. Wu,Kai Tak Lam,Jiannong Wang,Fan Yang,Qiaoshi Zeng,Jing Guo,Wenpei Gao,Jian‐Min Zuo,Jie Liu,Guosong Hong,Alexander L. Antaris,Meng‐Chang Lin,Wendy L. Mao,Hongjie Dai
标识
DOI:10.1038/s41928-021-00633-6
摘要
Graphene nanoribbons are of potential use in the development of electronic and optoelectronic devices. However, the preparation of narrow and long nanoribbons with smooth edges, sizeable bandgaps and high mobilities is challenging. Here we show that sub-10-nm-wide semiconducting graphene nanoribbons with atomically smooth closed edges can be produced by squashing carbon nanotubes using a high-pressure and thermal treatment. With this approach, nanoribbons as narrow as 1.4 nm can be created, and up to 54% of single- and double-walled nanotubes in a sample can be converted into edge-closed nanoribbons. We also fabricate edge-opened nanoribbons using nitric acid as the oxidant to selectively etch the edges of the squashed nanotubes under high pressure. A field-effect transistor fabricated using a 2.8-nm-wide edge-closed nanoribbon exhibits an on/off current ratio of more than 104, from which a bandgap of around 494 meV is estimated. The device also exhibits a field-effect mobility of 2,443 cm2 V−1 s−1 and an on-state channel conductivity of 7.42 mS.
科研通智能强力驱动
Strongly Powered by AbleSci AI