Prediction of Clinical Outcome for High-Intensity Focused Ultrasound Ablation of Uterine Leiomyomas Using Multiparametric MRI Radiomics-Based Machine Leaning Model

无线电技术 接收机工作特性 Lasso(编程语言) 随机森林 特征选择 人工智能 支持向量机 医学 机器学习 逻辑回归 子宫肌瘤 平滑肌瘤 校准 特征(语言学) 超声波 放射科 计算机科学 数学 统计 语言学 哲学 万维网
作者
Yineng Zheng,Liping Chen,Mengqi Liu,Jiahui Wu,Yu Rong,Fajin Lv
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:11 被引量:8
标识
DOI:10.3389/fonc.2021.618604
摘要

This study sought to develop a multiparametric MRI radiomics-based machine learning model for the preoperative prediction of clinical success for high-intensity-focused ultrasound (HIFU) ablation of uterine leiomyomas.One hundred and thirty patients who received HIFU ablation therapy for uterine leiomyomas were enrolled in this retrospective study. Radiomics features were extracted from T2-weighted (T2WI) image and ADC map derived from diffusion-weighted imaging (DWI). Three feature selection algorithms including least absolute shrinkage and selection operator (LASSO), recursive feature elimination (RFE), and ReliefF algorithm were used to select radiomics features, respectively, which were fed into four machine learning classifiers including k-nearest neighbors (KNN), logistic regression (LR), random forest (RF), and support vector machine (SVM) for the construction of outcome prediction models before HIFU treatment. The performance, predication ability, and clinical usefulness of these models were verified and evaluated using receiver operating characteristics (ROC), calibration, and decision curve analyses.The radiomics analysis provided an effective preoperative prediction for HIFU ablation of uterine leiomyomas. Using SVM with ReliefF algorithm, the multiparametric MRI radiomics model showed the favorable performance with average accuracy of 0.849, sensitivity of 0.814, specificity of 0.896, positive predictive value (PPV) of 0.903, negative predictive value (NPV) of 0.823, and the area under the ROC curve (AUC) of 0.887 (95% CI = 0.848-0.939) in fivefold cross-validation, followed by RF with ReliefF. Calibration and decision curve analyses confirmed the potential of model in predication ability and clinical usefulness.The radiomics-based machine learning model can predict preoperatively HIFU ablation response for the patients with uterine leiomyomas and contribute to determining individual treatment strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一粒苹果酒完成签到,获得积分10
刚刚
1秒前
阿西吧完成签到,获得积分10
2秒前
3秒前
3秒前
小乐发布了新的文献求助10
3秒前
3秒前
傅剑寒发布了新的文献求助30
3秒前
瓜6发布了新的文献求助10
4秒前
十是十发布了新的文献求助10
4秒前
科研通AI6应助山逍采纳,获得10
4秒前
Tom完成签到 ,获得积分10
5秒前
5秒前
傲娇芷容完成签到,获得积分20
7秒前
林新杰发布了新的文献求助10
7秒前
NexusExplorer应助gaintpeople采纳,获得10
9秒前
斯文败类应助ysy采纳,获得10
10秒前
科研小能手完成签到,获得积分10
10秒前
10秒前
zzzdx发布了新的文献求助10
11秒前
郭大侠发布了新的文献求助10
11秒前
英俊的如霜完成签到,获得积分10
12秒前
我是老大应助GTY采纳,获得30
13秒前
14秒前
seul完成签到,获得积分20
14秒前
风清扬发布了新的文献求助10
15秒前
15秒前
Una发布了新的文献求助10
15秒前
那就来吧完成签到,获得积分20
15秒前
15秒前
Hali完成签到,获得积分10
16秒前
瓜6完成签到 ,获得积分10
16秒前
华仔应助疯狂的吐司采纳,获得10
16秒前
林新杰完成签到,获得积分10
17秒前
执着从灵发布了新的文献求助20
18秒前
18秒前
luct发布了新的文献求助10
19秒前
Wangguagua完成签到 ,获得积分10
19秒前
失眠的思松关注了科研通微信公众号
20秒前
大可爱完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5354701
求助须知:如何正确求助?哪些是违规求助? 4486753
关于积分的说明 13967752
捐赠科研通 4387338
什么是DOI,文献DOI怎么找? 2410339
邀请新用户注册赠送积分活动 1402728
关于科研通互助平台的介绍 1376552