Prediction of Clinical Outcome for High-Intensity Focused Ultrasound Ablation of Uterine Leiomyomas Using Multiparametric MRI Radiomics-Based Machine Leaning Model

无线电技术 接收机工作特性 Lasso(编程语言) 随机森林 特征选择 人工智能 支持向量机 医学 机器学习 逻辑回归 子宫肌瘤 平滑肌瘤 校准 特征(语言学) 超声波 放射科 计算机科学 数学 统计 语言学 哲学 万维网
作者
Yineng Zheng,Liping Chen,Mengqi Liu,Jiahui Wu,Yu Rong,Fajin Lv
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:11 被引量:8
标识
DOI:10.3389/fonc.2021.618604
摘要

This study sought to develop a multiparametric MRI radiomics-based machine learning model for the preoperative prediction of clinical success for high-intensity-focused ultrasound (HIFU) ablation of uterine leiomyomas.One hundred and thirty patients who received HIFU ablation therapy for uterine leiomyomas were enrolled in this retrospective study. Radiomics features were extracted from T2-weighted (T2WI) image and ADC map derived from diffusion-weighted imaging (DWI). Three feature selection algorithms including least absolute shrinkage and selection operator (LASSO), recursive feature elimination (RFE), and ReliefF algorithm were used to select radiomics features, respectively, which were fed into four machine learning classifiers including k-nearest neighbors (KNN), logistic regression (LR), random forest (RF), and support vector machine (SVM) for the construction of outcome prediction models before HIFU treatment. The performance, predication ability, and clinical usefulness of these models were verified and evaluated using receiver operating characteristics (ROC), calibration, and decision curve analyses.The radiomics analysis provided an effective preoperative prediction for HIFU ablation of uterine leiomyomas. Using SVM with ReliefF algorithm, the multiparametric MRI radiomics model showed the favorable performance with average accuracy of 0.849, sensitivity of 0.814, specificity of 0.896, positive predictive value (PPV) of 0.903, negative predictive value (NPV) of 0.823, and the area under the ROC curve (AUC) of 0.887 (95% CI = 0.848-0.939) in fivefold cross-validation, followed by RF with ReliefF. Calibration and decision curve analyses confirmed the potential of model in predication ability and clinical usefulness.The radiomics-based machine learning model can predict preoperatively HIFU ablation response for the patients with uterine leiomyomas and contribute to determining individual treatment strategies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈发布了新的文献求助20
刚刚
懒洋洋发布了新的文献求助10
刚刚
刚刚
violenceee发布了新的文献求助10
刚刚
YY完成签到 ,获得积分10
刚刚
YYU完成签到,获得积分20
1秒前
1秒前
2秒前
Jasper应助韩鋆采纳,获得10
2秒前
小tan发布了新的文献求助10
2秒前
2秒前
Stella应助发嗲的芷采纳,获得10
3秒前
kkkkkkkk完成签到,获得积分10
5秒前
6秒前
李俊枫发布了新的文献求助10
7秒前
yznfly应助实验室采纳,获得200
7秒前
7秒前
小蘑菇应助金2022采纳,获得10
7秒前
yzy发布了新的文献求助10
7秒前
小党完成签到,获得积分10
7秒前
LNF发布了新的文献求助10
8秒前
金陵第一大美女完成签到,获得积分10
8秒前
猪咪完成签到,获得积分10
9秒前
英俊的铭应助violenceee采纳,获得10
9秒前
英姑应助zjcbk985采纳,获得10
9秒前
轩辕之柔完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
10秒前
啥也不会的萌新完成签到,获得积分10
10秒前
12秒前
12秒前
13秒前
小僵尸完成签到,获得积分10
13秒前
14秒前
liao应助啥也不会的萌新采纳,获得30
14秒前
独特的初彤完成签到 ,获得积分10
15秒前
顺利的小懒猪完成签到,获得积分10
16秒前
上官若男应助小tan采纳,获得10
16秒前
Vino发布了新的文献求助10
16秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5581109
求助须知:如何正确求助?哪些是违规求助? 4665690
关于积分的说明 14757767
捐赠科研通 4607511
什么是DOI,文献DOI怎么找? 2528260
邀请新用户注册赠送积分活动 1497575
关于科研通互助平台的介绍 1466462