Prediction of Clinical Outcome for High-Intensity Focused Ultrasound Ablation of Uterine Leiomyomas Using Multiparametric MRI Radiomics-Based Machine Leaning Model

无线电技术 接收机工作特性 Lasso(编程语言) 随机森林 特征选择 人工智能 支持向量机 医学 机器学习 逻辑回归 子宫肌瘤 平滑肌瘤 校准 特征(语言学) 超声波 放射科 计算机科学 数学 统计 语言学 哲学 万维网
作者
Yineng Zheng,Liping Chen,Mengqi Liu,Jiahui Wu,Yu Rong,Fajin Lv
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:11 被引量:8
标识
DOI:10.3389/fonc.2021.618604
摘要

This study sought to develop a multiparametric MRI radiomics-based machine learning model for the preoperative prediction of clinical success for high-intensity-focused ultrasound (HIFU) ablation of uterine leiomyomas.One hundred and thirty patients who received HIFU ablation therapy for uterine leiomyomas were enrolled in this retrospective study. Radiomics features were extracted from T2-weighted (T2WI) image and ADC map derived from diffusion-weighted imaging (DWI). Three feature selection algorithms including least absolute shrinkage and selection operator (LASSO), recursive feature elimination (RFE), and ReliefF algorithm were used to select radiomics features, respectively, which were fed into four machine learning classifiers including k-nearest neighbors (KNN), logistic regression (LR), random forest (RF), and support vector machine (SVM) for the construction of outcome prediction models before HIFU treatment. The performance, predication ability, and clinical usefulness of these models were verified and evaluated using receiver operating characteristics (ROC), calibration, and decision curve analyses.The radiomics analysis provided an effective preoperative prediction for HIFU ablation of uterine leiomyomas. Using SVM with ReliefF algorithm, the multiparametric MRI radiomics model showed the favorable performance with average accuracy of 0.849, sensitivity of 0.814, specificity of 0.896, positive predictive value (PPV) of 0.903, negative predictive value (NPV) of 0.823, and the area under the ROC curve (AUC) of 0.887 (95% CI = 0.848-0.939) in fivefold cross-validation, followed by RF with ReliefF. Calibration and decision curve analyses confirmed the potential of model in predication ability and clinical usefulness.The radiomics-based machine learning model can predict preoperatively HIFU ablation response for the patients with uterine leiomyomas and contribute to determining individual treatment strategies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
白白完成签到,获得积分10
1秒前
MDZZZZZ发布了新的文献求助10
2秒前
2秒前
浅笑百一完成签到,获得积分10
2秒前
心想事成完成签到,获得积分10
2秒前
Akim应助阿拉采纳,获得10
3秒前
圈圈发布了新的文献求助10
3秒前
lande完成签到,获得积分10
3秒前
上官若男应助yj采纳,获得10
3秒前
忽忽发布了新的文献求助10
4秒前
5秒前
哎哟大侠发布了新的文献求助10
5秒前
Chloe完成签到,获得积分10
5秒前
888发布了新的文献求助10
5秒前
彭于晏应助古朵采纳,获得10
5秒前
等风来完成签到,获得积分10
6秒前
zoma发布了新的文献求助10
6秒前
爱学习的医学小白完成签到 ,获得积分10
6秒前
6秒前
Akim应助耿耿采纳,获得10
6秒前
天天快乐应助晨宇王采纳,获得10
6秒前
7秒前
楚轩完成签到,获得积分10
7秒前
7秒前
一瓶水完成签到,获得积分20
7秒前
可爱的函函应助123456采纳,获得10
7秒前
7秒前
边边完成签到,获得积分20
8秒前
sleep完成签到,获得积分0
8秒前
9秒前
9秒前
小二郎应助Lemontree采纳,获得10
9秒前
9秒前
大有叔发布了新的文献求助10
10秒前
Rikuya发布了新的文献求助10
10秒前
11秒前
1234567发布了新的文献求助10
11秒前
aidiresi完成签到,获得积分10
11秒前
心想事成发布了新的文献求助10
12秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615218
求助须知:如何正确求助?哪些是违规求助? 4700091
关于积分的说明 14906605
捐赠科研通 4741474
什么是DOI,文献DOI怎么找? 2547964
邀请新用户注册赠送积分活动 1511725
关于科研通互助平台的介绍 1473781