清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Prediction of Clinical Outcome for High-Intensity Focused Ultrasound Ablation of Uterine Leiomyomas Using Multiparametric MRI Radiomics-Based Machine Leaning Model

无线电技术 接收机工作特性 Lasso(编程语言) 随机森林 特征选择 人工智能 支持向量机 医学 机器学习 逻辑回归 子宫肌瘤 平滑肌瘤 校准 特征(语言学) 超声波 放射科 计算机科学 数学 统计 语言学 哲学 万维网
作者
Yineng Zheng,Liping Chen,Mengqi Liu,Jiahui Wu,Yu Rong,Fajin Lv
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:11 被引量:8
标识
DOI:10.3389/fonc.2021.618604
摘要

This study sought to develop a multiparametric MRI radiomics-based machine learning model for the preoperative prediction of clinical success for high-intensity-focused ultrasound (HIFU) ablation of uterine leiomyomas.One hundred and thirty patients who received HIFU ablation therapy for uterine leiomyomas were enrolled in this retrospective study. Radiomics features were extracted from T2-weighted (T2WI) image and ADC map derived from diffusion-weighted imaging (DWI). Three feature selection algorithms including least absolute shrinkage and selection operator (LASSO), recursive feature elimination (RFE), and ReliefF algorithm were used to select radiomics features, respectively, which were fed into four machine learning classifiers including k-nearest neighbors (KNN), logistic regression (LR), random forest (RF), and support vector machine (SVM) for the construction of outcome prediction models before HIFU treatment. The performance, predication ability, and clinical usefulness of these models were verified and evaluated using receiver operating characteristics (ROC), calibration, and decision curve analyses.The radiomics analysis provided an effective preoperative prediction for HIFU ablation of uterine leiomyomas. Using SVM with ReliefF algorithm, the multiparametric MRI radiomics model showed the favorable performance with average accuracy of 0.849, sensitivity of 0.814, specificity of 0.896, positive predictive value (PPV) of 0.903, negative predictive value (NPV) of 0.823, and the area under the ROC curve (AUC) of 0.887 (95% CI = 0.848-0.939) in fivefold cross-validation, followed by RF with ReliefF. Calibration and decision curve analyses confirmed the potential of model in predication ability and clinical usefulness.The radiomics-based machine learning model can predict preoperatively HIFU ablation response for the patients with uterine leiomyomas and contribute to determining individual treatment strategies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
herpes完成签到 ,获得积分0
4秒前
11秒前
15秒前
15秒前
家的温暖完成签到,获得积分10
20秒前
Senase发布了新的文献求助10
21秒前
kmzzy完成签到,获得积分10
22秒前
29秒前
chcmy完成签到 ,获得积分0
32秒前
balko完成签到,获得积分10
33秒前
Karl完成签到,获得积分10
36秒前
量子星尘发布了新的文献求助10
55秒前
1分钟前
1分钟前
jlwang完成签到,获得积分10
1分钟前
gyx完成签到 ,获得积分10
1分钟前
zjz完成签到,获得积分10
1分钟前
小亮完成签到 ,获得积分10
1分钟前
大模型应助yf采纳,获得10
1分钟前
小马甲应助吱吱采纳,获得10
2分钟前
lx关闭了lx文献求助
3分钟前
雪山飞龙发布了新的文献求助10
3分钟前
3分钟前
yf发布了新的文献求助10
3分钟前
雪山飞龙完成签到,获得积分10
3分钟前
雪山飞龙发布了新的文献求助10
3分钟前
lx完成签到,获得积分10
3分钟前
阳光的丹雪完成签到,获得积分10
3分钟前
sunwsmile完成签到 ,获得积分10
3分钟前
scott_zip完成签到 ,获得积分10
3分钟前
4分钟前
Su发布了新的文献求助10
4分钟前
晴天完成签到 ,获得积分10
4分钟前
Tong完成签到,获得积分0
4分钟前
Ava应助科研通管家采纳,获得10
4分钟前
乐乐应助CC采纳,获得10
4分钟前
cgs完成签到 ,获得积分10
4分钟前
徐团伟完成签到 ,获得积分10
4分钟前
5分钟前
英俊的铭应助柏风华采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651202
求助须知:如何正确求助?哪些是违规求助? 4783941
关于积分的说明 15053329
捐赠科研通 4809919
什么是DOI,文献DOI怎么找? 2572803
邀请新用户注册赠送积分活动 1528714
关于科研通互助平台的介绍 1487747