作者
Wenpeng Li,Xinxin Li,Xi Mei,Fan Zhang,Jingping Xu,Chunru Liu,Chuanyi Wei,Qingsong Liu
摘要
Dating methodologies for Quaternary marine sediments play increasingly important roles in the reconstruction of paleoenvironments and paleoclimate in (paleo)oceanography. Previous reviews or studies have focused mainly on one or two methodologies, and their applications in one specific environment. With the continuing technological and methodological advances in different methods over the past few decades, an up-to-date comparison of the pros and cons of each dating methodology is needed to clearly understand their applications in marine geoscience research. In this review, we first briefly summarized the common methods of absolute dating and relative dating. These are (1) radioisotope dating with different half-lives using natural nuclides of 234Th, 210Pb, 230Th, and 226Ra, cosmogenic nuclides of 7Be, 14C, 10Be, 32Si, 26Al, 36Cl and 21Ne, and the artificial radionuclides of 137Cs, 239, 240Pu, 241Am and 129I that have been induced by atmospheric nuclear tests, accidents in nuclear plants, and discharges of radioactive wastes; (2) radiation exposure dating of luminescence and electron paramagnetic resonance (ESR) dating; and (3) stratigraphic dating of δ18O and paleomagnetic sequence. Applications and limitations from the marine terraces, estuaries, to hadal trenches have been summarized to each technique in the study of Quaternary marine geoscience extending from the Anthropocene through the Pleistocene. Finally, we introduced some emerging event dating methods, namely the arrivals of microplastics, mercury isotopes, and organic pollutant deposition that all appeared after the industrial resolution in our now changing ocean influenced by acidification, global warming, and anthropogenic activities. We ended by discussing future perspectives for reliable and high-resolution chronology by interdisciplinary methods including computer programming to better understand the natural geological evolution and predict the future changes in earth science.