材料科学
超级电容器
反应性(心理学)
氧化还原
电解质
电化学
纳米技术
动力学
电化学动力学
电池(电)
空位缺陷
化学工程
电极
化学
结晶学
物理化学
功率(物理)
病理
工程类
冶金
物理
替代医学
医学
量子力学
作者
Shude Liu,Ling Kang,Jisong Hu,Euigeol Jung,Joel Henzie,Azhar Alowasheeir,Jian Zhang,Ling Miao,Yusuke Yamauchi,Seong Chan Jun
出处
期刊:Small
[Wiley]
日期:2021-11-24
卷期号:18 (5)
被引量:125
标识
DOI:10.1002/smll.202104507
摘要
As a typical battery-type material, CuCo2 S4 is a promising candidate for supercapacitors due to the high theoretical specific capacity. However, its practical application is plagued by inherently sluggish ion diffusion kinetics and inferior electrical transport properties. Herein, sulfur vacancies are incorporated in CuCo2 S4 hollow nanoarchitectures (HNs) to accelerate redox reactivity. Experimental analyses and theoretical investigations uncover that the generated sulfur vacancies increase the active electron states, reduce the adsorption barriers of electrolyte ions, and enrich reactive redox species, thus achieving enhanced electrochemical performance. Consequently, the deficient CuCo2 S4 with optimized vacancy concentration presents a high specific capacity of 231 mAh g-1 at 1 A g-1 , a ≈1.78 times increase compared to that of pristine CuCo2 S4 , and exhibits a superior rate capability (73.8% capacity retention at 20 A g-1 ). Furthermore, flexible solid-state asymmetric supercapacitor devices assembled with the deficient CuCo2 S4 HNs and VN nanosheets deliver a high energy density of 61.4 W h kg-1 at 750 W kg-1 . Under different bending states, the devices display exceptional mechanical flexibility with no obvious change in CV curves at 50 mV s-1 . These findings provide insights for regulating electrode reactivity of battery-type materials through intentional nanoarchitectonics and vacancy engineering.
科研通智能强力驱动
Strongly Powered by AbleSci AI