亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

AKN-FGD: Adaptive Kohonen Network Based Fine-Grained Detection of LDoS Attacks

服务拒绝攻击 计算机科学 异常检测 自组织映射 适应性 入侵检测系统 聚类分析 服务质量 人工智能 数据挖掘 实时计算 计算机网络 生态学 生物 互联网 万维网
作者
Dan Tang,Xiyin Wang,Xiong Li,Pandi Vijayakumar,Neeraj Kumar
出处
期刊:IEEE Transactions on Dependable and Secure Computing [Institute of Electrical and Electronics Engineers]
卷期号:20 (1): 273-287 被引量:3
标识
DOI:10.1109/tdsc.2021.3131531
摘要

Low-rate denial of service (LDoS) attacks exploit the security vulnerabilities of network protocols adaptive mechanisms to launch periodic bursts. These attacks result in the severe destruction of the quality of service of TCP applications. Therefore, detection of LDoS attacks is a concern among scientific communities. However, the existing coarse-scale detection methods yield poor detection performance and adaptability. To achieve the accurate detection of LDoS attacks, an adaptive Kohonen Network based fine-grained detection (AKN-FGD) model for LDoS attacks is proposed. Based on the burst and periodicity characteristics of attack traffic, the Smith-Waterman (SW) algorithm is used to estimate the pulse period, which is the length of the detection unit. Subsequently, cluster analysis is performed for each detection unit using the adaptive Kohonen network (AKN) algorithm because the discreteness of traffic suffering from LDoS attacks is more pronounced than that of legitimate traffic. Finally, the existence of LDoS attacks can be verified in view of a novel decision metric, denoted as the anomaly degree, based on the clustering results. We conducted experiments not solely in traditional networks using NS3 and in a test-bed environment but also in a software-defined network (SDN), with accuracies of 99.7%, 99.8%, and 95.6% for detecting LDoS bursts, respectively. The experimental results show that the AKN-FGD scheme not only enables accurate fine-grained detection, that is, it can detect every attack burst, but also estimates the start and end times of the attacks. Moreover, we have compared the AKN-FGD scheme with some other detection methods, and a comparison of the results show that our proposed approach displays better detection performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
艺霖大王完成签到 ,获得积分10
21秒前
貔貅完成签到 ,获得积分10
38秒前
困困困完成签到 ,获得积分10
55秒前
Polymer72应助oleskarabach采纳,获得10
1分钟前
Polymer72应助oleskarabach采纳,获得10
1分钟前
丘比特应助科研通管家采纳,获得10
1分钟前
酷波er应助科研通管家采纳,获得10
1分钟前
彭于晏应助科研通管家采纳,获得10
1分钟前
2分钟前
2分钟前
3分钟前
SciGPT应助Jenny采纳,获得10
3分钟前
豆豆完成签到,获得积分10
3分钟前
bzdjsmw完成签到 ,获得积分10
3分钟前
4分钟前
RLLLLLLL完成签到 ,获得积分10
4分钟前
严珍珍完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
5分钟前
5分钟前
puzhongjiMiQ完成签到,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
5分钟前
6分钟前
6分钟前
6分钟前
高大厉完成签到 ,获得积分10
6分钟前
6分钟前
云缘之芒完成签到,获得积分10
7分钟前
科研通AI2S应助芝芝采纳,获得10
7分钟前
7分钟前
Jenny发布了新的文献求助10
7分钟前
英俊的铭应助云缘之芒采纳,获得10
7分钟前
情怀应助Jenny采纳,获得10
7分钟前
8分钟前
冬去春来完成签到 ,获得积分10
8分钟前
8分钟前
8分钟前
白华苍松发布了新的文献求助10
8分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
中国荞麦品种志 1000
BIOLOGY OF NON-CHORDATES 1000
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3360076
求助须知:如何正确求助?哪些是违规求助? 2982627
关于积分的说明 8704599
捐赠科研通 2664401
什么是DOI,文献DOI怎么找? 1459035
科研通“疑难数据库(出版商)”最低求助积分说明 675397
邀请新用户注册赠送积分活动 666421