Inherited Blood Cancer Predisposition through Altered Transcription Elongation

生物 生殖系 遗传学 外显子组测序 外显子组 种系突变 髓样 癌症研究 突变 基因
作者
Liam D. Cato,Jiawei Zhao,Erik L. Bao,Samuel C. Bryant,Nicholas Williams,Yuemeng Jia,Jyoti Nangalia,Michael A. Erb,Seychelle M. Vos,Scott A. Armstrong,Vijay G. Sankaran
出处
期刊:Blood [Elsevier BV]
卷期号:138 (Supplement 1): 629-629
标识
DOI:10.1182/blood-2021-153381
摘要

Abstract Despite considerable advances in defining the somatic driver mutations underlying myeloid malignancies, including the myeloproliferative neoplasms (MPNs), a significant heritable component for these diseases remains poorly understood. While common genetic variant association studies have been valuable, they fail to explain the majority of heritable variation. We reasoned that rare variant association studies could provide a valuable complementary approach to identify additional inherited risk factors. We therefore utilized exome sequencing data from 166,953 UK Biobank participants and performed a gene-based burden analysis for germline genetic variants conferring risk for acquiring a myeloid malignancy. CTR9, which encodes a key component of the PAF1 transcription elongation complex, was among the significant genes identified (SKAT-O p-value = 5.47x10 -7). The deleterious variants in CTR9 collectively exhibit a 9.6 (95%CI = 4.86-19.04) increased odds of acquiring a myeloid malignancy and this risk was largely driven by the MPNs. We replicated this association in an independent cohort of 211 MPN patients using external controls. We could show through structural and biochemical analyses that the identified deleterious variants perturbed assembly of the PAF1 complex but did not display dominant negative activity. Given that increased hematopoietic stem cell (HSC) self-renewal has been shown to predispose to the risk of acquiring MPNs, we sought to define whether CTR9 perturbation could alter HSC self-renewal or function. We achieved predominantly heterozygous loss-of-function in human hematopoietic stem and progenitor cells (HSPCs) by titrating Cas9 ribonucleoprotein delivery with several independent guide RNAs. Partial loss of CTR9 in HSPCs resulted in expansion of phenotypic long-term HSCs (LT-HSCs) and more differentiated short-term HSCs (ST-HSCs). We additionally could show through single cell RNA-sequencing (scRNA-seq) that there was an expansion of molecularly defined HSCs upon partial loss of CTR9. The observed increase in HSCs appeared paradoxical, given that the PAF1 complex has been suggested to be crucial for HSC maintenance. To explore how the observed HSC expansion with CTR9 perturbation may arise, as well as given known interactions between the PAF1 complex and the competing transcriptional super elongation complex (SEC), we examined whether SEC target genes in HSCs, such as mid to posterior HOXA genes, may be activated with partial CTR9 loss. Remarkably, we observed a significant enrichment for hematopoietic SEC target genes upon CTR9 perturbation in HSCs by gene set enrichment analysis (normalized enrichment score = 3.29, p-value < 0.001). In light of these findings suggesting that SEC activity may be increased with partial CTR9 loss-of-function, as occurs in individuals harboring myeloid malignancy variants, we sought to functionally validate these observations. Using the inhibitors of the SEC, including SR-0813 that targets MLLT3 or with an inhibitor of CDK9, we noted rescue of the CTR9-mediated expansion of phenotypic LT- and ST-HSCs without a significant impact on the bulk HSPC population. To further elucidate underlying mechanisms, we performed immunoprecipitation of PAF1 or SEC component MLLT3 in HSPCs with control or CTR9 editing. While we continued to pull down all PAF1 complex components with PAF1, we also noted pulldown of MLLT3, which increased with CTR9 editing. MLLT3 immunoprecipitation revealed selective pulldowns of PAF1 and CDC73, which also increased with CTR9 editing. These findings show how PAF1 complex components PAF1 and CDC73 interact with and stimulate SEC activity. Our findings reveal how CTR9 usually restricts this activity and constrains transcriptional elongation to limit HSC self-renewal. We functionally validated these findings through selective editing of different PAF1 complex components in HSPCs: we observed reduced HSCs upon editing of PAF1 and CDC73, but increases with editing of other PAF1 complex components. Our findings collectively demonstrate a mechanism by which a previously undefined myeloid malignancy predisposition occurs. We demonstrate that CTR9 loss-of-function stimulates SEC activity and thereby results in HSC expansion to confer risk for acquiring MPNs and other myeloid malignancies. Disclosures Armstrong: Neomorph Inc: Consultancy, Current holder of individual stocks in a privately-held company; Imago Biosciences: Consultancy; Vitae/Allergan Pharma: Consultancy; Cyteir Therapeutics: Consultancy; C4 Therapeutics: Consultancy; OxStem Oncology: Consultancy; Accent Therapeutics: Consultancy; Mana Therapeutics: Consultancy; Janssen: Research Funding; Novartis: Research Funding; Syndax: Research Funding; AstraZeneca: Research Funding. Sankaran: Ensoma: Consultancy; Forma: Consultancy; Cellarity: Consultancy; Novartis: Consultancy; Branch Biosciences: Consultancy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
Cici发布了新的文献求助10
1秒前
所所应助爱雨霁采纳,获得10
4秒前
WanHaiiiYan完成签到,获得积分10
4秒前
苗条的小肥羊完成签到,获得积分10
4秒前
YamDaamCaa应助熠熠畅采纳,获得30
4秒前
ttTINA完成签到,获得积分10
4秒前
金雪发布了新的文献求助10
4秒前
4秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
7秒前
z945发布了新的文献求助10
8秒前
李爱国应助ZWK采纳,获得10
8秒前
小二郎应助酷酷巧蟹采纳,获得10
8秒前
酷波er应助Cici采纳,获得10
8秒前
璐璐发布了新的文献求助10
9秒前
斯文败类应助D1fficulty采纳,获得30
9秒前
负责啤酒完成签到,获得积分10
9秒前
11秒前
lsy关注了科研通微信公众号
11秒前
11秒前
脑洞疼应助彭于彦祖采纳,获得10
12秒前
13秒前
科研通AI2S应助受伤幻桃采纳,获得10
14秒前
14秒前
14秒前
14秒前
15秒前
Singularity应助细心的靖巧采纳,获得10
15秒前
过冷水发布了新的文献求助10
15秒前
糕gao发布了新的文献求助10
17秒前
S1mple_gentleman完成签到,获得积分10
18秒前
追寻翩跹发布了新的文献求助10
18秒前
D1fficulty应助文件撤销了驳回
18秒前
binol完成签到,获得积分10
18秒前
18秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3971216
求助须知:如何正确求助?哪些是违规求助? 3515911
关于积分的说明 11180016
捐赠科研通 3251003
什么是DOI,文献DOI怎么找? 1795626
邀请新用户注册赠送积分活动 875937
科研通“疑难数据库(出版商)”最低求助积分说明 805207