Unsupervised Learning for Automated Detection of Coronary Artery Disease Subgroups

医学 冠状动脉疾病 内科学 心脏病学 疾病 人工智能 计算机科学
作者
Alyssa M. Flores,Alejandro Schuler,Anne V. Eberhard,Jeffrey W. Olin,John P. Cooke,Nicholas J. Leeper,Nigam H. Shah,Elsie Gyang Ross
出处
期刊:Journal of the American Heart Association [Wiley]
卷期号:10 (23) 被引量:27
标识
DOI:10.1161/jaha.121.021976
摘要

Background The promise of precision population health includes the ability to use robust patient data to tailor prevention and care to specific groups. Advanced analytics may allow for automated detection of clinically informative subgroups that account for clinical, genetic, and environmental variability. This study sought to evaluate whether unsupervised machine learning approaches could interpret heterogeneous and missing clinical data to discover clinically important coronary artery disease subgroups. Methods and Results The Genetic Determinants of Peripheral Arterial Disease study is a prospective cohort that includes individuals with newly diagnosed and/or symptomatic coronary artery disease. We applied generalized low rank modeling and K‐means cluster analysis using 155 phenotypic and genetic variables from 1329 participants. Cox proportional hazard models were used to examine associations between clusters and major adverse cardiovascular and cerebrovascular events and all‐cause mortality. We then compared performance of risk stratification based on clusters and the American College of Cardiology/American Heart Association pooled cohort equations. Unsupervised analysis identified 4 phenotypically and prognostically distinct clusters. All‐cause mortality was highest in cluster 1 (oldest/most comorbid; 26%), whereas major adverse cardiovascular and cerebrovascular event rates were highest in cluster 2 (youngest/multiethnic; 41%). Cluster 4 (middle‐aged/healthiest behaviors) experienced more incident major adverse cardiovascular and cerebrovascular events (30%) than cluster 3 (middle‐aged/lowest medication adherence; 23%), despite apparently similar risk factor and lifestyle profiles. In comparison with the pooled cohort equations, cluster membership was more informative for risk assessment of myocardial infarction, stroke, and mortality. Conclusions Unsupervised clustering identified 4 unique coronary artery disease subgroups with distinct clinical trajectories. Flexible unsupervised machine learning algorithms offer the ability to meaningfully process heterogeneous patient data and provide sharper insights into disease characterization and risk assessment. Registration URL: https://www.clinicaltrials.gov ; Unique identifier: NCT00380185.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
heyi完成签到,获得积分10
1秒前
3秒前
Mry完成签到,获得积分10
4秒前
花痴的早晨完成签到,获得积分10
4秒前
浮游应助陈陈采纳,获得10
4秒前
张文博发布了新的文献求助10
5秒前
6秒前
楠楠完成签到,获得积分10
6秒前
思源应助ohm采纳,获得10
7秒前
善学以致用应助科研小辉采纳,获得10
8秒前
8秒前
CipherSage应助夏炫采纳,获得10
9秒前
9秒前
9秒前
稳重的含灵完成签到,获得积分10
10秒前
万能图书馆应助luckyblue采纳,获得10
10秒前
我是老大应助FleurdelisDZhang采纳,获得10
10秒前
zzh完成签到,获得积分10
10秒前
酷波er应助吃菠萝的桃子采纳,获得10
11秒前
12秒前
lbw完成签到,获得积分10
12秒前
13秒前
香蕉纹发布了新的文献求助10
13秒前
一路向南发布了新的文献求助10
14秒前
Hank发布了新的文献求助30
14秒前
14秒前
15秒前
顾矜应助张文博采纳,获得10
15秒前
儒雅谷芹发布了新的文献求助10
15秒前
15秒前
16秒前
彼岸发布了新的文献求助10
16秒前
鸭子发布了新的文献求助10
17秒前
郭郭完成签到,获得积分10
17秒前
17秒前
18秒前
肥仔发布了新的文献求助10
19秒前
电王发布了新的文献求助10
19秒前
花寮发布了新的文献求助10
20秒前
20秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5216056
求助须知:如何正确求助?哪些是违规求助? 4391027
关于积分的说明 13671418
捐赠科研通 4253032
什么是DOI,文献DOI怎么找? 2333551
邀请新用户注册赠送积分活动 1331132
关于科研通互助平台的介绍 1284932