Unsupervised Learning for Automated Detection of Coronary Artery Disease Subgroups

医学 冠状动脉疾病 内科学 心脏病学 疾病 人工智能 计算机科学
作者
Alyssa M. Flores,Alejandro Schuler,Anne V. Eberhard,Jeffrey W. Olin,John P. Cooke,Nicholas J. Leeper,Nigam H. Shah,Elsie Gyang Ross
出处
期刊:Journal of the American Heart Association [Ovid Technologies (Wolters Kluwer)]
卷期号:10 (23) 被引量:27
标识
DOI:10.1161/jaha.121.021976
摘要

Background The promise of precision population health includes the ability to use robust patient data to tailor prevention and care to specific groups. Advanced analytics may allow for automated detection of clinically informative subgroups that account for clinical, genetic, and environmental variability. This study sought to evaluate whether unsupervised machine learning approaches could interpret heterogeneous and missing clinical data to discover clinically important coronary artery disease subgroups. Methods and Results The Genetic Determinants of Peripheral Arterial Disease study is a prospective cohort that includes individuals with newly diagnosed and/or symptomatic coronary artery disease. We applied generalized low rank modeling and K‐means cluster analysis using 155 phenotypic and genetic variables from 1329 participants. Cox proportional hazard models were used to examine associations between clusters and major adverse cardiovascular and cerebrovascular events and all‐cause mortality. We then compared performance of risk stratification based on clusters and the American College of Cardiology/American Heart Association pooled cohort equations. Unsupervised analysis identified 4 phenotypically and prognostically distinct clusters. All‐cause mortality was highest in cluster 1 (oldest/most comorbid; 26%), whereas major adverse cardiovascular and cerebrovascular event rates were highest in cluster 2 (youngest/multiethnic; 41%). Cluster 4 (middle‐aged/healthiest behaviors) experienced more incident major adverse cardiovascular and cerebrovascular events (30%) than cluster 3 (middle‐aged/lowest medication adherence; 23%), despite apparently similar risk factor and lifestyle profiles. In comparison with the pooled cohort equations, cluster membership was more informative for risk assessment of myocardial infarction, stroke, and mortality. Conclusions Unsupervised clustering identified 4 unique coronary artery disease subgroups with distinct clinical trajectories. Flexible unsupervised machine learning algorithms offer the ability to meaningfully process heterogeneous patient data and provide sharper insights into disease characterization and risk assessment. Registration URL: https://www.clinicaltrials.gov ; Unique identifier: NCT00380185.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
折耳根拌香菜完成签到,获得积分10
1秒前
qiuxiali123发布了新的文献求助10
1秒前
1秒前
无昵称完成签到,获得积分10
1秒前
深情安青应助俭朴远望采纳,获得10
1秒前
Hello应助yqsf789采纳,获得10
1秒前
1秒前
2秒前
静槐完成签到,获得积分10
2秒前
搜集达人应助woaikeyan采纳,获得60
3秒前
3秒前
3秒前
无极微光应助季宇采纳,获得20
3秒前
miao发布了新的文献求助20
4秒前
4秒前
4秒前
Clarence完成签到,获得积分10
5秒前
静槐发布了新的文献求助10
5秒前
jessicazhong完成签到,获得积分10
6秒前
6秒前
XD完成签到,获得积分10
6秒前
6秒前
回眸是明眸完成签到,获得积分10
6秒前
King发布了新的文献求助10
7秒前
7秒前
7秒前
AAAsun完成签到,获得积分10
7秒前
伊笙完成签到 ,获得积分0
7秒前
贺兰觿发布了新的文献求助20
7秒前
XJTU_jyh完成签到,获得积分10
8秒前
8秒前
木木王完成签到 ,获得积分10
8秒前
内向含桃完成签到,获得积分10
8秒前
8秒前
苏silence发布了新的文献求助10
8秒前
筷取水饺完成签到,获得积分20
8秒前
8秒前
ddingk发布了新的文献求助10
9秒前
感动白开水完成签到,获得积分10
9秒前
啦啦啦123发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573997
求助须知:如何正确求助?哪些是违规求助? 4660326
关于积分的说明 14728933
捐赠科研通 4600192
什么是DOI,文献DOI怎么找? 2524706
邀请新用户注册赠送积分活动 1495014
关于科研通互助平台的介绍 1465017