Unsupervised Learning for Automated Detection of Coronary Artery Disease Subgroups

医学 冠状动脉疾病 内科学 心脏病学 疾病 人工智能 计算机科学
作者
Alyssa M. Flores,Alejandro Schuler,Anne V. Eberhard,Jeffrey W. Olin,John P. Cooke,Nicholas J. Leeper,Nigam H. Shah,Elsie Gyang Ross
出处
期刊:Journal of the American Heart Association [Ovid Technologies (Wolters Kluwer)]
卷期号:10 (23) 被引量:27
标识
DOI:10.1161/jaha.121.021976
摘要

Background The promise of precision population health includes the ability to use robust patient data to tailor prevention and care to specific groups. Advanced analytics may allow for automated detection of clinically informative subgroups that account for clinical, genetic, and environmental variability. This study sought to evaluate whether unsupervised machine learning approaches could interpret heterogeneous and missing clinical data to discover clinically important coronary artery disease subgroups. Methods and Results The Genetic Determinants of Peripheral Arterial Disease study is a prospective cohort that includes individuals with newly diagnosed and/or symptomatic coronary artery disease. We applied generalized low rank modeling and K‐means cluster analysis using 155 phenotypic and genetic variables from 1329 participants. Cox proportional hazard models were used to examine associations between clusters and major adverse cardiovascular and cerebrovascular events and all‐cause mortality. We then compared performance of risk stratification based on clusters and the American College of Cardiology/American Heart Association pooled cohort equations. Unsupervised analysis identified 4 phenotypically and prognostically distinct clusters. All‐cause mortality was highest in cluster 1 (oldest/most comorbid; 26%), whereas major adverse cardiovascular and cerebrovascular event rates were highest in cluster 2 (youngest/multiethnic; 41%). Cluster 4 (middle‐aged/healthiest behaviors) experienced more incident major adverse cardiovascular and cerebrovascular events (30%) than cluster 3 (middle‐aged/lowest medication adherence; 23%), despite apparently similar risk factor and lifestyle profiles. In comparison with the pooled cohort equations, cluster membership was more informative for risk assessment of myocardial infarction, stroke, and mortality. Conclusions Unsupervised clustering identified 4 unique coronary artery disease subgroups with distinct clinical trajectories. Flexible unsupervised machine learning algorithms offer the ability to meaningfully process heterogeneous patient data and provide sharper insights into disease characterization and risk assessment. Registration URL: https://www.clinicaltrials.gov ; Unique identifier: NCT00380185.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开朗寇发布了新的文献求助10
刚刚
小费发布了新的文献求助50
刚刚
。。发布了新的文献求助10
刚刚
子叶完成签到,获得积分10
1秒前
深情安青应助123采纳,获得10
1秒前
2秒前
Zayro完成签到,获得积分10
2秒前
er发布了新的文献求助10
2秒前
lghxq发布了新的文献求助10
3秒前
3秒前
SciGPT应助sda采纳,获得10
3秒前
3秒前
4秒前
优美月饼完成签到,获得积分10
4秒前
xiaolan发布了新的文献求助10
4秒前
6秒前
良辰应助奋斗雨雪采纳,获得10
6秒前
归尘发布了新的文献求助10
6秒前
6秒前
6秒前
子叶发布了新的文献求助20
7秒前
阔达乘云完成签到,获得积分10
8秒前
老大舅子发布了新的文献求助10
9秒前
我是小短腿的妹妹完成签到,获得积分20
9秒前
李健的小迷弟应助童0731采纳,获得10
9秒前
会飞的猪完成签到,获得积分10
10秒前
阔达乘云发布了新的文献求助10
11秒前
11秒前
28551发布了新的文献求助10
11秒前
星辰大海应助DBY采纳,获得10
13秒前
匿迹完成签到,获得积分10
13秒前
谨慎不凡关注了科研通微信公众号
13秒前
ewk发布了新的文献求助10
13秒前
DC完成签到,获得积分10
14秒前
bkagyin应助称心千凝采纳,获得10
14秒前
sda发布了新的文献求助10
14秒前
金戈完成签到,获得积分10
14秒前
z3Q应助hg0000采纳,获得10
14秒前
14秒前
所所应助Yik采纳,获得10
15秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305803
求助须知:如何正确求助?哪些是违规求助? 2939514
关于积分的说明 8493767
捐赠科研通 2613930
什么是DOI,文献DOI怎么找? 1427800
科研通“疑难数据库(出版商)”最低求助积分说明 663185
邀请新用户注册赠送积分活动 647987