Unsupervised Learning for Automated Detection of Coronary Artery Disease Subgroups

医学 冠状动脉疾病 内科学 心脏病学 疾病 人工智能 计算机科学
作者
Alyssa M. Flores,Alejandro Schuler,Anne V. Eberhard,Jeffrey W. Olin,John P. Cooke,Nicholas J. Leeper,Nigam H. Shah,Elsie Gyang Ross
出处
期刊:Journal of the American Heart Association [Ovid Technologies (Wolters Kluwer)]
卷期号:10 (23) 被引量:27
标识
DOI:10.1161/jaha.121.021976
摘要

Background The promise of precision population health includes the ability to use robust patient data to tailor prevention and care to specific groups. Advanced analytics may allow for automated detection of clinically informative subgroups that account for clinical, genetic, and environmental variability. This study sought to evaluate whether unsupervised machine learning approaches could interpret heterogeneous and missing clinical data to discover clinically important coronary artery disease subgroups. Methods and Results The Genetic Determinants of Peripheral Arterial Disease study is a prospective cohort that includes individuals with newly diagnosed and/or symptomatic coronary artery disease. We applied generalized low rank modeling and K‐means cluster analysis using 155 phenotypic and genetic variables from 1329 participants. Cox proportional hazard models were used to examine associations between clusters and major adverse cardiovascular and cerebrovascular events and all‐cause mortality. We then compared performance of risk stratification based on clusters and the American College of Cardiology/American Heart Association pooled cohort equations. Unsupervised analysis identified 4 phenotypically and prognostically distinct clusters. All‐cause mortality was highest in cluster 1 (oldest/most comorbid; 26%), whereas major adverse cardiovascular and cerebrovascular event rates were highest in cluster 2 (youngest/multiethnic; 41%). Cluster 4 (middle‐aged/healthiest behaviors) experienced more incident major adverse cardiovascular and cerebrovascular events (30%) than cluster 3 (middle‐aged/lowest medication adherence; 23%), despite apparently similar risk factor and lifestyle profiles. In comparison with the pooled cohort equations, cluster membership was more informative for risk assessment of myocardial infarction, stroke, and mortality. Conclusions Unsupervised clustering identified 4 unique coronary artery disease subgroups with distinct clinical trajectories. Flexible unsupervised machine learning algorithms offer the ability to meaningfully process heterogeneous patient data and provide sharper insights into disease characterization and risk assessment. Registration URL: https://www.clinicaltrials.gov ; Unique identifier: NCT00380185.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dudu发布了新的文献求助30
1秒前
1秒前
乔文达发布了新的文献求助10
2秒前
374733930完成签到,获得积分10
2秒前
脑洞疼应助默默的映波采纳,获得10
3秒前
研友_VZG7GZ应助cc采纳,获得10
4秒前
王小西发布了新的文献求助20
5秒前
coco完成签到,获得积分10
6秒前
6秒前
374733930发布了新的文献求助10
8秒前
粥mi完成签到,获得积分10
9秒前
13秒前
14秒前
1212发布了新的文献求助20
15秒前
Akim应助寻光人采纳,获得10
15秒前
17秒前
隐形曼青应助嘉欣采纳,获得10
19秒前
20秒前
优秀的修洁完成签到,获得积分10
20秒前
神奇宝贝完成签到,获得积分10
21秒前
杜祖盛发布了新的文献求助10
22秒前
Jasper应助忆仙姿采纳,获得10
23秒前
量子星尘发布了新的文献求助10
25秒前
xm发布了新的文献求助10
25秒前
情怀应助Gluneko采纳,获得10
25秒前
25秒前
发fa完成签到 ,获得积分10
28秒前
28秒前
22222完成签到,获得积分10
29秒前
朴实的河马完成签到,获得积分10
30秒前
duchenglin完成签到 ,获得积分10
30秒前
复杂千亦发布了新的文献求助10
31秒前
34秒前
涵泽发布了新的文献求助10
35秒前
38秒前
青春借贷发布了新的文献求助10
40秒前
vividkingking完成签到 ,获得积分10
41秒前
陈嘉嘉完成签到,获得积分10
42秒前
44秒前
avalanche应助科研通管家采纳,获得20
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5420890
求助须知:如何正确求助?哪些是违规求助? 4535903
关于积分的说明 14151854
捐赠科研通 4452682
什么是DOI,文献DOI怎么找? 2442484
邀请新用户注册赠送积分活动 1433930
关于科研通互助平台的介绍 1411021