已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Unsupervised Learning for Automated Detection of Coronary Artery Disease Subgroups

医学 冠状动脉疾病 内科学 心脏病学 疾病 人工智能 计算机科学
作者
Alyssa M. Flores,Alejandro Schuler,Anne V. Eberhard,Jeffrey W. Olin,John P. Cooke,Nicholas J. Leeper,Nigam H. Shah,Elsie Gyang Ross
出处
期刊:Journal of the American Heart Association [Wiley]
卷期号:10 (23) 被引量:27
标识
DOI:10.1161/jaha.121.021976
摘要

Background The promise of precision population health includes the ability to use robust patient data to tailor prevention and care to specific groups. Advanced analytics may allow for automated detection of clinically informative subgroups that account for clinical, genetic, and environmental variability. This study sought to evaluate whether unsupervised machine learning approaches could interpret heterogeneous and missing clinical data to discover clinically important coronary artery disease subgroups. Methods and Results The Genetic Determinants of Peripheral Arterial Disease study is a prospective cohort that includes individuals with newly diagnosed and/or symptomatic coronary artery disease. We applied generalized low rank modeling and K‐means cluster analysis using 155 phenotypic and genetic variables from 1329 participants. Cox proportional hazard models were used to examine associations between clusters and major adverse cardiovascular and cerebrovascular events and all‐cause mortality. We then compared performance of risk stratification based on clusters and the American College of Cardiology/American Heart Association pooled cohort equations. Unsupervised analysis identified 4 phenotypically and prognostically distinct clusters. All‐cause mortality was highest in cluster 1 (oldest/most comorbid; 26%), whereas major adverse cardiovascular and cerebrovascular event rates were highest in cluster 2 (youngest/multiethnic; 41%). Cluster 4 (middle‐aged/healthiest behaviors) experienced more incident major adverse cardiovascular and cerebrovascular events (30%) than cluster 3 (middle‐aged/lowest medication adherence; 23%), despite apparently similar risk factor and lifestyle profiles. In comparison with the pooled cohort equations, cluster membership was more informative for risk assessment of myocardial infarction, stroke, and mortality. Conclusions Unsupervised clustering identified 4 unique coronary artery disease subgroups with distinct clinical trajectories. Flexible unsupervised machine learning algorithms offer the ability to meaningfully process heterogeneous patient data and provide sharper insights into disease characterization and risk assessment. Registration URL: https://www.clinicaltrials.gov ; Unique identifier: NCT00380185.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Guoqiang发布了新的文献求助10
刚刚
slx发布了新的文献求助30
刚刚
bubu发布了新的文献求助10
1秒前
2秒前
2秒前
小鱼完成签到 ,获得积分10
5秒前
5秒前
leeeeee发布了新的文献求助10
5秒前
JamesPei应助JHY采纳,获得10
5秒前
6秒前
6秒前
老李啊完成签到,获得积分10
6秒前
嘻嘻嘻发布了新的文献求助10
8秒前
失眠采白发布了新的文献求助10
10秒前
10秒前
Summeryz920发布了新的文献求助10
11秒前
zpp发布了新的文献求助10
11秒前
12秒前
13秒前
fengliurencai完成签到,获得积分10
16秒前
JHY发布了新的文献求助10
17秒前
18秒前
禁止通行完成签到,获得积分10
20秒前
共享精神应助小林采纳,获得10
21秒前
momo完成签到,获得积分10
22秒前
Pepsi完成签到,获得积分10
23秒前
可莉完成签到 ,获得积分10
24秒前
WGS发布了新的文献求助10
30秒前
星星点灯完成签到,获得积分10
30秒前
31秒前
liu完成签到,获得积分10
31秒前
33秒前
35秒前
小林发布了新的文献求助10
36秒前
docM完成签到 ,获得积分10
38秒前
SOESAN完成签到,获得积分10
38秒前
tmq发布了新的文献求助10
39秒前
小林完成签到,获得积分10
43秒前
清爽的乐曲完成签到,获得积分10
45秒前
45秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994300
求助须知:如何正确求助?哪些是违规求助? 3534729
关于积分的说明 11266406
捐赠科研通 3274658
什么是DOI,文献DOI怎么找? 1806413
邀请新用户注册赠送积分活动 883283
科研通“疑难数据库(出版商)”最低求助积分说明 809731