Unsupervised Learning for Automated Detection of Coronary Artery Disease Subgroups

医学 冠状动脉疾病 内科学 心脏病学 疾病 人工智能 计算机科学
作者
Alyssa M. Flores,Alejandro Schuler,Anne V. Eberhard,Jeffrey W. Olin,John P. Cooke,Nicholas J. Leeper,Nigam H. Shah,Elsie Gyang Ross
出处
期刊:Journal of the American Heart Association [Wiley]
卷期号:10 (23) 被引量:27
标识
DOI:10.1161/jaha.121.021976
摘要

Background The promise of precision population health includes the ability to use robust patient data to tailor prevention and care to specific groups. Advanced analytics may allow for automated detection of clinically informative subgroups that account for clinical, genetic, and environmental variability. This study sought to evaluate whether unsupervised machine learning approaches could interpret heterogeneous and missing clinical data to discover clinically important coronary artery disease subgroups. Methods and Results The Genetic Determinants of Peripheral Arterial Disease study is a prospective cohort that includes individuals with newly diagnosed and/or symptomatic coronary artery disease. We applied generalized low rank modeling and K‐means cluster analysis using 155 phenotypic and genetic variables from 1329 participants. Cox proportional hazard models were used to examine associations between clusters and major adverse cardiovascular and cerebrovascular events and all‐cause mortality. We then compared performance of risk stratification based on clusters and the American College of Cardiology/American Heart Association pooled cohort equations. Unsupervised analysis identified 4 phenotypically and prognostically distinct clusters. All‐cause mortality was highest in cluster 1 (oldest/most comorbid; 26%), whereas major adverse cardiovascular and cerebrovascular event rates were highest in cluster 2 (youngest/multiethnic; 41%). Cluster 4 (middle‐aged/healthiest behaviors) experienced more incident major adverse cardiovascular and cerebrovascular events (30%) than cluster 3 (middle‐aged/lowest medication adherence; 23%), despite apparently similar risk factor and lifestyle profiles. In comparison with the pooled cohort equations, cluster membership was more informative for risk assessment of myocardial infarction, stroke, and mortality. Conclusions Unsupervised clustering identified 4 unique coronary artery disease subgroups with distinct clinical trajectories. Flexible unsupervised machine learning algorithms offer the ability to meaningfully process heterogeneous patient data and provide sharper insights into disease characterization and risk assessment. Registration URL: https://www.clinicaltrials.gov ; Unique identifier: NCT00380185.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
独特听芹完成签到,获得积分10
2秒前
zz完成签到,获得积分10
2秒前
3秒前
晚风完成签到,获得积分10
4秒前
jwj发布了新的文献求助10
5秒前
5秒前
白熊完成签到 ,获得积分10
5秒前
6秒前
李健应助北齐冲浪的鱼采纳,获得10
7秒前
7秒前
王一鸣发布了新的文献求助10
8秒前
ikutovaya完成签到,获得积分10
8秒前
8秒前
奋斗的妙松完成签到,获得积分10
9秒前
老实莫言完成签到,获得积分10
9秒前
10秒前
量子星尘发布了新的文献求助150
10秒前
wop111应助morph采纳,获得20
10秒前
追寻的冬寒完成签到 ,获得积分10
11秒前
12秒前
吼吼吼吼发布了新的文献求助10
12秒前
善学以致用应助生动念烟采纳,获得10
12秒前
由天与发布了新的文献求助10
13秒前
wsy发布了新的文献求助10
14秒前
16秒前
18秒前
18秒前
19秒前
lllllll完成签到,获得积分10
20秒前
20秒前
王一鸣完成签到,获得积分10
21秒前
量子星尘发布了新的文献求助10
23秒前
心灵尔安完成签到 ,获得积分10
24秒前
你终硕发布了新的文献求助10
24秒前
科研通AI6应助满意的又蓝采纳,获得10
24秒前
jwj完成签到,获得积分10
25秒前
26秒前
大个应助gc529采纳,获得10
27秒前
28秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950711
求助须知:如何正确求助?哪些是违规求助? 4213460
关于积分的说明 13104286
捐赠科研通 3995337
什么是DOI,文献DOI怎么找? 2186837
邀请新用户注册赠送积分活动 1202090
关于科研通互助平台的介绍 1115359