Unsupervised Learning for Automated Detection of Coronary Artery Disease Subgroups

医学 冠状动脉疾病 内科学 心脏病学 疾病 人工智能 计算机科学
作者
Alyssa M. Flores,Alejandro Schuler,Anne V. Eberhard,Jeffrey W. Olin,John P. Cooke,Nicholas J. Leeper,Nigam H. Shah,Elsie Gyang Ross
出处
期刊:Journal of the American Heart Association [Ovid Technologies (Wolters Kluwer)]
卷期号:10 (23) 被引量:27
标识
DOI:10.1161/jaha.121.021976
摘要

Background The promise of precision population health includes the ability to use robust patient data to tailor prevention and care to specific groups. Advanced analytics may allow for automated detection of clinically informative subgroups that account for clinical, genetic, and environmental variability. This study sought to evaluate whether unsupervised machine learning approaches could interpret heterogeneous and missing clinical data to discover clinically important coronary artery disease subgroups. Methods and Results The Genetic Determinants of Peripheral Arterial Disease study is a prospective cohort that includes individuals with newly diagnosed and/or symptomatic coronary artery disease. We applied generalized low rank modeling and K‐means cluster analysis using 155 phenotypic and genetic variables from 1329 participants. Cox proportional hazard models were used to examine associations between clusters and major adverse cardiovascular and cerebrovascular events and all‐cause mortality. We then compared performance of risk stratification based on clusters and the American College of Cardiology/American Heart Association pooled cohort equations. Unsupervised analysis identified 4 phenotypically and prognostically distinct clusters. All‐cause mortality was highest in cluster 1 (oldest/most comorbid; 26%), whereas major adverse cardiovascular and cerebrovascular event rates were highest in cluster 2 (youngest/multiethnic; 41%). Cluster 4 (middle‐aged/healthiest behaviors) experienced more incident major adverse cardiovascular and cerebrovascular events (30%) than cluster 3 (middle‐aged/lowest medication adherence; 23%), despite apparently similar risk factor and lifestyle profiles. In comparison with the pooled cohort equations, cluster membership was more informative for risk assessment of myocardial infarction, stroke, and mortality. Conclusions Unsupervised clustering identified 4 unique coronary artery disease subgroups with distinct clinical trajectories. Flexible unsupervised machine learning algorithms offer the ability to meaningfully process heterogeneous patient data and provide sharper insights into disease characterization and risk assessment. Registration URL: https://www.clinicaltrials.gov ; Unique identifier: NCT00380185.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李春生完成签到,获得积分10
1秒前
2秒前
jiayou完成签到,获得积分20
3秒前
尔东先生完成签到,获得积分10
3秒前
蒋芳华完成签到,获得积分10
3秒前
misstwo完成签到,获得积分10
3秒前
Lisa发布了新的文献求助10
4秒前
凯卮完成签到,获得积分10
4秒前
芋你呀完成签到,获得积分10
4秒前
Aiden完成签到,获得积分10
4秒前
缥缈的雁枫完成签到,获得积分10
5秒前
张雨欣完成签到 ,获得积分10
5秒前
lawang发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
MnO2fff完成签到,获得积分10
5秒前
子慕完成签到,获得积分10
6秒前
pw完成签到 ,获得积分10
6秒前
BDH发布了新的文献求助10
8秒前
啊泽ovo完成签到,获得积分10
9秒前
9秒前
waiho完成签到,获得积分10
10秒前
去码头整点薯条完成签到 ,获得积分10
11秒前
七七完成签到 ,获得积分10
11秒前
大个应助lawang采纳,获得10
12秒前
疯狂的大闸蟹完成签到,获得积分10
12秒前
12秒前
wuqs发布了新的文献求助10
13秒前
Tbo完成签到,获得积分20
14秒前
xiejuan完成签到,获得积分10
14秒前
杨维完成签到 ,获得积分10
14秒前
在九月完成签到 ,获得积分10
16秒前
嗯哼哈哈发布了新的文献求助30
16秒前
双双完成签到,获得积分10
16秒前
微尘之末完成签到,获得积分10
17秒前
biosep完成签到,获得积分10
17秒前
哈士轩发布了新的文献求助10
18秒前
西瓜妹完成签到 ,获得积分10
19秒前
dujinjun完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助10
19秒前
wuqs完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651571
求助须知:如何正确求助?哪些是违规求助? 4785173
关于积分的说明 15054264
捐赠科研通 4810183
什么是DOI,文献DOI怎么找? 2573004
邀请新用户注册赠送积分活动 1528930
关于科研通互助平台的介绍 1487917