Streamlined magnetic resonance fingerprinting: Fast whole-brain coverage with deep-learning based parameter estimation

计算机科学 人工智能 深度学习 成像体模 模式识别(心理学) 匹配(统计) 过程(计算) 磁共振成像 人工神经网络 基本事实 卷积神经网络 计算机视觉 数学 物理 统计 医学 操作系统 光学 放射科
作者
Mahdi Khajehim,Thomas Christen,Fred Tam,Simon J. Graham
出处
期刊:NeuroImage [Elsevier BV]
卷期号:238: 118237-118237 被引量:16
标识
DOI:10.1016/j.neuroimage.2021.118237
摘要

Magnetic resonance fingerprinting (MRF) is a quantitative MRI (qMRI) framework that provides simultaneous estimates of multiple relaxation parameters as well as metrics of field inhomogeneity in a single acquisition. However, current challenges exist in the forms of (1) scan time; (2) need for custom image reconstruction; (3) large dictionary sizes; (4) long dictionary-matching time. This study aims to introduce a novel streamlined magnetic-resonance fingerprinting (sMRF) framework based on a single-shot echo-planar imaging (EPI) sequence to simultaneously estimate tissue T1, T2, and T2* with integrated B1+ correction. Encouraged by recent work on EPI-based MRF, we developed a method that combines spin-echo EPI with gradient-echo EPI to achieve T2 in addition to T1 and T2* quantification. To this design, we add simultaneous multi-slice (SMS) acceleration to enable full-brain coverage in a few minutes. Moreover, in the parameter-estimation step, we use deep learning to train a deep neural network (DNN) to accelerate the estimation process by orders of magnitude. Notably, due to the high image quality of the EPI scans, the training process can rely simply on Bloch-simulated data. The DNN also removes the need for storing large dictionaries. Phantom scans along with in-vivo multi-slice scans from seven healthy volunteers were acquired with resolutions of 1.1×1.1×3 mm3 and 1.7×1.7×3 mm3, and the results were validated against ground truth measurements. Excellent correspondence was found between our T1, T2, and T2* estimates and results obtained from standard approaches. In the phantom scan, a strong linear relationship (R = 1-1.04, R2>0.96) was found for all parameter estimates, with a particularly high agreement for T2 estimation (R2>0.99). Similar findings are reported for the in-vivo human data for all of our parameter estimates. Incorporation of DNN results in a reduction of parameter estimation time on the order of 1000 x and a reduction in storage requirements on the order of 2500 x while achieving highly similar results as conventional dictionary matching (%differences of 7.4 ± 0.4%, 3.6 ± 0.3% and 6.0 ± 0.4% error in T1, T2, and T2* estimation). Thus, sMRF has the potential to be the method of choice for future MRF studies by providing ease of implementation, fast whole-brain coverage, and ultra-fast T1/T2/T2* estimation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
雪流星发布了新的文献求助10
刚刚
刚刚
lucky完成签到,获得积分10
1秒前
qyzhu发布了新的文献求助10
1秒前
小w发布了新的文献求助10
2秒前
yaya发布了新的文献求助10
4秒前
5秒前
自信项链发布了新的文献求助10
5秒前
快乐的鸡蛋黄完成签到,获得积分10
5秒前
6秒前
木子发布了新的文献求助10
6秒前
7秒前
8秒前
9秒前
Caden发布了新的文献求助10
9秒前
9秒前
9秒前
hiaoyi完成签到 ,获得积分0
10秒前
10秒前
11秒前
走四方应助Jemezs采纳,获得10
11秒前
Owen应助yaya采纳,获得10
11秒前
12秒前
fanhuam完成签到,获得积分10
12秒前
无心的代桃完成签到,获得积分10
13秒前
小何医生发布了新的文献求助10
14秒前
14秒前
烂漫的中蓝完成签到,获得积分10
14秒前
专注的可乐完成签到,获得积分10
15秒前
15秒前
洋子发布了新的文献求助10
15秒前
15秒前
糊涂涂发布了新的文献求助10
18秒前
19秒前
19秒前
YHF2完成签到,获得积分10
19秒前
852应助追佩奇十条街采纳,获得10
20秒前
顺心的水之完成签到,获得积分10
21秒前
大昭发布了新的文献求助30
21秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740976
求助须知:如何正确求助?哪些是违规求助? 3283817
关于积分的说明 10036983
捐赠科研通 3000610
什么是DOI,文献DOI怎么找? 1646618
邀请新用户注册赠送积分活动 783804
科研通“疑难数据库(出版商)”最低求助积分说明 750427