Learning to Balance the Learning Rates Between Various Modalities via Adaptive Tracking Factor

计算机科学 模式 过度拟合 人工智能 模态(人机交互) 因子(编程语言) 机器学习 代表(政治) 多模式学习 对比度(视觉) 人工神经网络 社会科学 社会学 政治 政治学 法学 程序设计语言
作者
Sun Ya,Sijie Mai,Haifeng Hu
出处
期刊:IEEE Signal Processing Letters [Institute of Electrical and Electronics Engineers]
卷期号:28: 1650-1654 被引量:15
标识
DOI:10.1109/lsp.2021.3101421
摘要

Multimodal networks with richer information contents should always outperform the unimodal counterparts. In our experiment, however, we observe that this is not always the case. Prior efforts on multimodal tasks mainly tend to design a uniform optimization algorithm for all modalities, and yet only obtain a sub-optimal multimodal representation with the fusion of under-optimized unimodal representations, which are still challenged by performance drop on multimodal networks caused by heterogeneity among modalities. In this work, to remove the slowdowns in performance on multimodal tasks, we decouple the learning procedures of unimodal and multimodal networks by dynamically balancing the learning rates for various modalities, so that the modality-specific optimization algorithm for each modality can be obtained. Specifically, the adaptive tracking factor (ATF) is introduced to adjust the learning rate for each modality on a real-time basis. Furthermore, adaptive convergent equalization (ACE) and bilevel directional optimization (BDO) are proposed to equalize and update the ATF, avoiding sub-optimal unimodal representations due to overfitting or underfitting. Extensive experiments on multimodal sentiment analysis demonstrate that our method achieves superior performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
liying完成签到,获得积分10
刚刚
2秒前
hahahah完成签到,获得积分10
2秒前
Jasper应助Hhbbb采纳,获得10
2秒前
英俊的铭应助虾仁采纳,获得10
2秒前
英俊的铭应助自信天空采纳,获得10
2秒前
buno发布了新的文献求助30
3秒前
上善若水发布了新的文献求助10
3秒前
wwo哇发布了新的文献求助10
3秒前
阿鹏发布了新的文献求助10
4秒前
5秒前
好久不见发布了新的文献求助10
5秒前
5秒前
dd完成签到,获得积分20
5秒前
tt完成签到 ,获得积分10
5秒前
yxy发布了新的文献求助10
6秒前
ccw发布了新的文献求助20
7秒前
7秒前
冰红茶完成签到,获得积分10
7秒前
tanrui发布了新的文献求助10
8秒前
8秒前
hhh发布了新的文献求助10
9秒前
阿鹏完成签到,获得积分10
9秒前
科研通AI6应助苗苗采纳,获得10
9秒前
周周完成签到,获得积分20
9秒前
10秒前
11秒前
领导范儿应助Sally采纳,获得10
11秒前
11秒前
中和皇极发布了新的文献求助10
11秒前
11秒前
11秒前
tt完成签到 ,获得积分10
12秒前
tanrui完成签到,获得积分10
13秒前
鱼yu完成签到,获得积分10
14秒前
大模型应助小金鱼采纳,获得10
14秒前
14秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588259
求助须知:如何正确求助?哪些是违规求助? 4671299
关于积分的说明 14786793
捐赠科研通 4624766
什么是DOI,文献DOI怎么找? 2531723
邀请新用户注册赠送积分活动 1500308
关于科研通互助平台的介绍 1468262