亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Building damage assessment for rapid disaster response with a deep object-based semantic change detection framework: From natural disasters to man-made disasters

计算机科学 一致性(知识库) 深度学习 卷积神经网络 特征(语言学) 对象(语法) 代表(政治) 人工智能 数据挖掘 遥感 地理 政治学 语言学 政治 哲学 法学
作者
Zhuo Zheng,Yanfei Zhong,Junjue Wang,Ailong Ma,Liangpei Zhang
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:265: 112636-112636 被引量:383
标识
DOI:10.1016/j.rse.2021.112636
摘要

Sudden-onset natural and man-made disasters represent a threat to the safety of human life and property. Rapid and accurate building damage assessment using bitemporal high spatial resolution (HSR) remote sensing images can quickly and safely provide us with spatial distribution information and statistics of the damage degree to assist with humanitarian assistance and disaster response. For building damage assessment, strong feature representation and semantic consistency are the keys to obtaining a high accuracy. However, the conventional object-based image analysis (OBIA) framework using a patch-based convolutional neural network (CNN) can guarantee semantic consistency, but with weak feature representation, while the Siamese fully convolutional network approach has strong feature representation capabilities but is semantically inconsistent. In this paper, we propose a deep object-based semantic change detection framework, called ChangeOS, for building damage assessment. To seamlessly integrate OBIA and deep learning, we adopt a deep object localization network to generate accurate building objects, in place of the superpixel segmentation commonly used in the conventional OBIA framework. Furthermore, the deep object localization network and deep damage classification network are integrated into a unified semantic change detection network for end-to-end building damage assessment. This also provides deep object features that can supply an object prior to the deep damage classification network for more consistent semantic feature representation. Object-based post-processing is adopted to further guarantee the semantic consistency of each object. The experimental results obtained on a global scale dataset including 19 natural disaster events and two local scale datasets including the Beirut port explosion event and the Bata military barracks explosion event show that ChangeOS is superior to the currently published methods in speed and accuracy, and has a superior generalization ability for man-made disasters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lqhccww发布了新的文献求助30
1秒前
andrele发布了新的文献求助10
15秒前
科研通AI2S应助lqhccww采纳,获得10
25秒前
FashionBoy应助科研通管家采纳,获得10
51秒前
科研通AI2S应助科研通管家采纳,获得10
51秒前
Criminology34应助科研通管家采纳,获得10
51秒前
1分钟前
1分钟前
1分钟前
xiaozou55完成签到 ,获得积分10
2分钟前
研友_VZG7GZ应助shimly0101xx采纳,获得10
2分钟前
2分钟前
Criminology34应助科研通管家采纳,获得20
2分钟前
Criminology34应助科研通管家采纳,获得20
2分钟前
3分钟前
闪闪的硬币完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
inRe发布了新的文献求助10
3分钟前
3分钟前
Amelia完成签到 ,获得积分10
3分钟前
3分钟前
炙热曲奇完成签到 ,获得积分10
3分钟前
xiaozhou完成签到,获得积分10
3分钟前
level完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
iShine完成签到 ,获得积分10
3分钟前
刘哈哈完成签到 ,获得积分10
3分钟前
4分钟前
科研通AI6应助小亦fighting采纳,获得10
4分钟前
4分钟前
4分钟前
hiu发布了新的文献求助20
4分钟前
4分钟前
4分钟前
NexusExplorer应助hiu采纳,获得100
4分钟前
汉堡包应助科研通管家采纳,获得10
4分钟前
充电宝应助科研通管家采纳,获得10
4分钟前
标致初柔发布了新的文献求助10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Terminologia Embryologica 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5617034
求助须知:如何正确求助?哪些是违规求助? 4701416
关于积分的说明 14913638
捐赠科研通 4748621
什么是DOI,文献DOI怎么找? 2549278
邀请新用户注册赠送积分活动 1512335
关于科研通互助平台的介绍 1474080