Building damage assessment for rapid disaster response with a deep object-based semantic change detection framework: From natural disasters to man-made disasters

计算机科学 一致性(知识库) 深度学习 卷积神经网络 特征(语言学) 对象(语法) 代表(政治) 人工智能 数据挖掘 遥感 地理 政治学 语言学 政治 哲学 法学
作者
Zhuo Zheng,Yanfei Zhong,Junjue Wang,Ailong Ma,Liangpei Zhang
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:265: 112636-112636 被引量:383
标识
DOI:10.1016/j.rse.2021.112636
摘要

Sudden-onset natural and man-made disasters represent a threat to the safety of human life and property. Rapid and accurate building damage assessment using bitemporal high spatial resolution (HSR) remote sensing images can quickly and safely provide us with spatial distribution information and statistics of the damage degree to assist with humanitarian assistance and disaster response. For building damage assessment, strong feature representation and semantic consistency are the keys to obtaining a high accuracy. However, the conventional object-based image analysis (OBIA) framework using a patch-based convolutional neural network (CNN) can guarantee semantic consistency, but with weak feature representation, while the Siamese fully convolutional network approach has strong feature representation capabilities but is semantically inconsistent. In this paper, we propose a deep object-based semantic change detection framework, called ChangeOS, for building damage assessment. To seamlessly integrate OBIA and deep learning, we adopt a deep object localization network to generate accurate building objects, in place of the superpixel segmentation commonly used in the conventional OBIA framework. Furthermore, the deep object localization network and deep damage classification network are integrated into a unified semantic change detection network for end-to-end building damage assessment. This also provides deep object features that can supply an object prior to the deep damage classification network for more consistent semantic feature representation. Object-based post-processing is adopted to further guarantee the semantic consistency of each object. The experimental results obtained on a global scale dataset including 19 natural disaster events and two local scale datasets including the Beirut port explosion event and the Bata military barracks explosion event show that ChangeOS is superior to the currently published methods in speed and accuracy, and has a superior generalization ability for man-made disasters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akun发布了新的文献求助10
1秒前
yang发布了新的文献求助10
1秒前
2秒前
2秒前
紧张的幻桃完成签到,获得积分10
3秒前
4秒前
SuperYu发布了新的文献求助10
4秒前
四然完成签到,获得积分10
5秒前
liujinzhi完成签到,获得积分10
5秒前
Wqian发布了新的文献求助10
6秒前
6秒前
归尘发布了新的文献求助10
7秒前
stt发布了新的文献求助10
7秒前
7秒前
香蕉觅云应助中将采纳,获得10
8秒前
小雨完成签到,获得积分10
8秒前
8秒前
He发布了新的文献求助10
9秒前
舒心的冷安完成签到,获得积分10
9秒前
wlkq发布了新的文献求助10
10秒前
10秒前
10秒前
温婉的不弱完成签到,获得积分20
10秒前
流流124141发布了新的文献求助200
11秒前
11秒前
香蕉觅云应助科研通管家采纳,获得10
11秒前
深情安青应助科研通管家采纳,获得10
11秒前
今后应助科研通管家采纳,获得10
11秒前
orixero应助科研通管家采纳,获得10
11秒前
orixero应助科研通管家采纳,获得10
11秒前
Lucas应助科研通管家采纳,获得10
11秒前
win应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
今后应助科研通管家采纳,获得10
12秒前
完美世界应助科研通管家采纳,获得10
12秒前
Kirito应助科研通管家采纳,获得50
12秒前
Jasper应助科研通管家采纳,获得10
12秒前
我是老大应助科研通管家采纳,获得30
12秒前
搜集达人应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
ACOG Practice Bulletin: Polycystic Ovary Syndrome 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5602734
求助须知:如何正确求助?哪些是违规求助? 4687724
关于积分的说明 14851119
捐赠科研通 4685087
什么是DOI,文献DOI怎么找? 2540031
邀请新用户注册赠送积分活动 1506793
关于科研通互助平台的介绍 1471448