Building damage assessment for rapid disaster response with a deep object-based semantic change detection framework: From natural disasters to man-made disasters

计算机科学 一致性(知识库) 深度学习 卷积神经网络 特征(语言学) 对象(语法) 代表(政治) 人工智能 数据挖掘 遥感 地理 哲学 语言学 政治 政治学 法学
作者
Zhuo Zheng,Yanfei Zhong,Junjue Wang,Ailong Ma,Liangpei Zhang
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:265: 112636-112636 被引量:383
标识
DOI:10.1016/j.rse.2021.112636
摘要

Sudden-onset natural and man-made disasters represent a threat to the safety of human life and property. Rapid and accurate building damage assessment using bitemporal high spatial resolution (HSR) remote sensing images can quickly and safely provide us with spatial distribution information and statistics of the damage degree to assist with humanitarian assistance and disaster response. For building damage assessment, strong feature representation and semantic consistency are the keys to obtaining a high accuracy. However, the conventional object-based image analysis (OBIA) framework using a patch-based convolutional neural network (CNN) can guarantee semantic consistency, but with weak feature representation, while the Siamese fully convolutional network approach has strong feature representation capabilities but is semantically inconsistent. In this paper, we propose a deep object-based semantic change detection framework, called ChangeOS, for building damage assessment. To seamlessly integrate OBIA and deep learning, we adopt a deep object localization network to generate accurate building objects, in place of the superpixel segmentation commonly used in the conventional OBIA framework. Furthermore, the deep object localization network and deep damage classification network are integrated into a unified semantic change detection network for end-to-end building damage assessment. This also provides deep object features that can supply an object prior to the deep damage classification network for more consistent semantic feature representation. Object-based post-processing is adopted to further guarantee the semantic consistency of each object. The experimental results obtained on a global scale dataset including 19 natural disaster events and two local scale datasets including the Beirut port explosion event and the Bata military barracks explosion event show that ChangeOS is superior to the currently published methods in speed and accuracy, and has a superior generalization ability for man-made disasters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张姣姣完成签到,获得积分10
刚刚
xiyueQAQ完成签到,获得积分10
刚刚
1秒前
1秒前
英勇冬瓜完成签到,获得积分10
1秒前
1秒前
1秒前
打打应助DrLin采纳,获得10
1秒前
怡然花卷发布了新的文献求助10
2秒前
2秒前
葡萄小伊ovo完成签到 ,获得积分10
2秒前
2秒前
呆萌菲音发布了新的文献求助10
2秒前
啦啦啦123发布了新的文献求助10
2秒前
3秒前
深情安青应助yu采纳,获得10
3秒前
Zenobia完成签到,获得积分10
3秒前
在水一方应助曾无忧采纳,获得10
3秒前
xiaoxiaoxiao完成签到,获得积分10
3秒前
笨笨山芙完成签到 ,获得积分10
3秒前
4秒前
李爱国应助联合工程采纳,获得10
4秒前
4秒前
顾矜应助Lze采纳,获得10
5秒前
5秒前
5秒前
6秒前
6秒前
李爱国应助duoduo采纳,获得10
6秒前
科研通AI6应助郭露露采纳,获得10
6秒前
Jasper应助Oil采纳,获得10
6秒前
领导范儿应助dhppp采纳,获得10
7秒前
7秒前
善良耳机完成签到,获得积分10
7秒前
7秒前
7秒前
动听皮带发布了新的文献求助30
7秒前
孟寐以求发布了新的文献求助20
7秒前
lyu完成签到,获得积分10
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573997
求助须知:如何正确求助?哪些是违规求助? 4660326
关于积分的说明 14728933
捐赠科研通 4600192
什么是DOI,文献DOI怎么找? 2524706
邀请新用户注册赠送积分活动 1495014
关于科研通互助平台的介绍 1465017