Building damage assessment for rapid disaster response with a deep object-based semantic change detection framework: From natural disasters to man-made disasters

计算机科学 一致性(知识库) 深度学习 卷积神经网络 特征(语言学) 对象(语法) 代表(政治) 人工智能 数据挖掘 遥感 地理 哲学 语言学 政治 政治学 法学
作者
Zhuo Zheng,Yanfei Zhong,Junjue Wang,Ailong Ma,Liangpei Zhang
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:265: 112636-112636 被引量:108
标识
DOI:10.1016/j.rse.2021.112636
摘要

Sudden-onset natural and man-made disasters represent a threat to the safety of human life and property. Rapid and accurate building damage assessment using bitemporal high spatial resolution (HSR) remote sensing images can quickly and safely provide us with spatial distribution information and statistics of the damage degree to assist with humanitarian assistance and disaster response. For building damage assessment, strong feature representation and semantic consistency are the keys to obtaining a high accuracy. However, the conventional object-based image analysis (OBIA) framework using a patch-based convolutional neural network (CNN) can guarantee semantic consistency, but with weak feature representation, while the Siamese fully convolutional network approach has strong feature representation capabilities but is semantically inconsistent. In this paper, we propose a deep object-based semantic change detection framework, called ChangeOS, for building damage assessment. To seamlessly integrate OBIA and deep learning, we adopt a deep object localization network to generate accurate building objects, in place of the superpixel segmentation commonly used in the conventional OBIA framework. Furthermore, the deep object localization network and deep damage classification network are integrated into a unified semantic change detection network for end-to-end building damage assessment. This also provides deep object features that can supply an object prior to the deep damage classification network for more consistent semantic feature representation. Object-based post-processing is adopted to further guarantee the semantic consistency of each object. The experimental results obtained on a global scale dataset including 19 natural disaster events and two local scale datasets including the Beirut port explosion event and the Bata military barracks explosion event show that ChangeOS is superior to the currently published methods in speed and accuracy, and has a superior generalization ability for man-made disasters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
伶俐绿海完成签到 ,获得积分10
1秒前
11完成签到,获得积分10
1秒前
2秒前
QC发布了新的文献求助10
3秒前
3秒前
布梨完成签到 ,获得积分10
3秒前
4秒前
鲨鱼完成签到,获得积分10
4秒前
852应助优美丹雪采纳,获得10
4秒前
ku发布了新的文献求助10
5秒前
Orange应助顺顺尼采纳,获得10
7秒前
8秒前
Yw_M发布了新的文献求助10
8秒前
8秒前
圈儿完成签到,获得积分10
10秒前
Zyy完成签到,获得积分10
11秒前
12秒前
直率的冰海完成签到,获得积分10
13秒前
QC完成签到,获得积分10
14秒前
Zyy发布了新的文献求助10
14秒前
酷波er应助lzy采纳,获得10
16秒前
zz关注了科研通微信公众号
18秒前
18秒前
搜集达人应助史莱莱莱姆采纳,获得10
18秒前
19秒前
傻傻的宛白完成签到,获得积分10
19秒前
开放幻丝完成签到 ,获得积分10
19秒前
程志杰应助暖部采纳,获得10
20秒前
23秒前
ttt完成签到,获得积分10
23秒前
Cindy应助科研通管家采纳,获得10
24秒前
爆米花应助科研通管家采纳,获得10
24秒前
香蕉觅云应助科研通管家采纳,获得10
24秒前
24秒前
科研通AI2S应助YBOH采纳,获得10
24秒前
Cindy应助科研通管家采纳,获得10
24秒前
赘婿应助科研通管家采纳,获得10
24秒前
Cindy应助科研通管家采纳,获得10
24秒前
顺顺尼发布了新的文献求助10
24秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3260808
求助须知:如何正确求助?哪些是违规求助? 2901913
关于积分的说明 8318098
捐赠科研通 2571665
什么是DOI,文献DOI怎么找? 1397111
科研通“疑难数据库(出版商)”最低求助积分说明 653655
邀请新用户注册赠送积分活动 632178