已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Building damage assessment for rapid disaster response with a deep object-based semantic change detection framework: From natural disasters to man-made disasters

计算机科学 一致性(知识库) 深度学习 卷积神经网络 特征(语言学) 对象(语法) 代表(政治) 人工智能 数据挖掘 遥感 地理 哲学 语言学 政治 政治学 法学
作者
Zhuo Zheng,Yanfei Zhong,Junjue Wang,Ailong Ma,Liangpei Zhang
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:265: 112636-112636 被引量:108
标识
DOI:10.1016/j.rse.2021.112636
摘要

Sudden-onset natural and man-made disasters represent a threat to the safety of human life and property. Rapid and accurate building damage assessment using bitemporal high spatial resolution (HSR) remote sensing images can quickly and safely provide us with spatial distribution information and statistics of the damage degree to assist with humanitarian assistance and disaster response. For building damage assessment, strong feature representation and semantic consistency are the keys to obtaining a high accuracy. However, the conventional object-based image analysis (OBIA) framework using a patch-based convolutional neural network (CNN) can guarantee semantic consistency, but with weak feature representation, while the Siamese fully convolutional network approach has strong feature representation capabilities but is semantically inconsistent. In this paper, we propose a deep object-based semantic change detection framework, called ChangeOS, for building damage assessment. To seamlessly integrate OBIA and deep learning, we adopt a deep object localization network to generate accurate building objects, in place of the superpixel segmentation commonly used in the conventional OBIA framework. Furthermore, the deep object localization network and deep damage classification network are integrated into a unified semantic change detection network for end-to-end building damage assessment. This also provides deep object features that can supply an object prior to the deep damage classification network for more consistent semantic feature representation. Object-based post-processing is adopted to further guarantee the semantic consistency of each object. The experimental results obtained on a global scale dataset including 19 natural disaster events and two local scale datasets including the Beirut port explosion event and the Bata military barracks explosion event show that ChangeOS is superior to the currently published methods in speed and accuracy, and has a superior generalization ability for man-made disasters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小屋完成签到,获得积分10
6秒前
10秒前
10秒前
QSQ完成签到,获得积分10
10秒前
在水一方应助拿铁采纳,获得10
12秒前
13秒前
纯真的靖琪完成签到 ,获得积分10
14秒前
英姑应助white采纳,获得10
14秒前
博修发布了新的文献求助30
14秒前
15秒前
FIN应助博修采纳,获得30
18秒前
swx完成签到,获得积分10
23秒前
义气的跳跳糖完成签到,获得积分10
23秒前
万能图书馆应助导师老八采纳,获得10
23秒前
hhhxmx发布了新的文献求助10
24秒前
可爱的函函应助hhh采纳,获得10
25秒前
25秒前
CAOHOU应助wwho_O采纳,获得10
26秒前
26秒前
27秒前
29秒前
英俊的铭应助博修采纳,获得10
30秒前
svt发布了新的文献求助10
30秒前
yangyajie发布了新的文献求助10
33秒前
水墨橙子发布了新的文献求助10
34秒前
36秒前
文子完成签到 ,获得积分10
36秒前
追寻冰淇淋应助小陆采纳,获得10
38秒前
lisunyi应助水墨橙子采纳,获得200
40秒前
40秒前
Dyying完成签到,获得积分10
41秒前
42秒前
42秒前
沉静海白完成签到,获得积分10
43秒前
沉静海白发布了新的文献求助10
45秒前
NJP发布了新的文献求助10
46秒前
导师老八发布了新的文献求助10
47秒前
47秒前
49秒前
pumpkin完成签到,获得积分10
50秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3963020
求助须知:如何正确求助?哪些是违规求助? 3508944
关于积分的说明 11144216
捐赠科研通 3241909
什么是DOI,文献DOI怎么找? 1791705
邀请新用户注册赠送积分活动 873115
科研通“疑难数据库(出版商)”最低求助积分说明 803603