Building damage assessment for rapid disaster response with a deep object-based semantic change detection framework: From natural disasters to man-made disasters

计算机科学 一致性(知识库) 深度学习 卷积神经网络 特征(语言学) 对象(语法) 代表(政治) 人工智能 数据挖掘 遥感 地理 哲学 语言学 政治 政治学 法学
作者
Zhuo Zheng,Yanfei Zhong,Junjue Wang,Ailong Ma,Liangpei Zhang
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:265: 112636-112636 被引量:271
标识
DOI:10.1016/j.rse.2021.112636
摘要

Sudden-onset natural and man-made disasters represent a threat to the safety of human life and property. Rapid and accurate building damage assessment using bitemporal high spatial resolution (HSR) remote sensing images can quickly and safely provide us with spatial distribution information and statistics of the damage degree to assist with humanitarian assistance and disaster response. For building damage assessment, strong feature representation and semantic consistency are the keys to obtaining a high accuracy. However, the conventional object-based image analysis (OBIA) framework using a patch-based convolutional neural network (CNN) can guarantee semantic consistency, but with weak feature representation, while the Siamese fully convolutional network approach has strong feature representation capabilities but is semantically inconsistent. In this paper, we propose a deep object-based semantic change detection framework, called ChangeOS, for building damage assessment. To seamlessly integrate OBIA and deep learning, we adopt a deep object localization network to generate accurate building objects, in place of the superpixel segmentation commonly used in the conventional OBIA framework. Furthermore, the deep object localization network and deep damage classification network are integrated into a unified semantic change detection network for end-to-end building damage assessment. This also provides deep object features that can supply an object prior to the deep damage classification network for more consistent semantic feature representation. Object-based post-processing is adopted to further guarantee the semantic consistency of each object. The experimental results obtained on a global scale dataset including 19 natural disaster events and two local scale datasets including the Beirut port explosion event and the Bata military barracks explosion event show that ChangeOS is superior to the currently published methods in speed and accuracy, and has a superior generalization ability for man-made disasters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是完成签到,获得积分10
刚刚
刚刚
1秒前
1秒前
2秒前
hhgcc发布了新的文献求助10
2秒前
奇怪的柒发布了新的文献求助10
2秒前
3秒前
菲菲呀发布了新的文献求助10
3秒前
l98916发布了新的文献求助10
4秒前
xxxx.完成签到 ,获得积分10
4秒前
dawn发布了新的文献求助10
5秒前
VDC应助hersy采纳,获得30
5秒前
5秒前
5秒前
科研通AI5应助polarbear采纳,获得10
6秒前
归零儿完成签到,获得积分10
6秒前
余生发布了新的文献求助10
6秒前
qiqi发布了新的文献求助10
6秒前
外向宛菡发布了新的文献求助10
7秒前
今后应助Haho采纳,获得10
7秒前
7秒前
7秒前
7秒前
勤劳的访烟完成签到,获得积分10
8秒前
浮游应助lucky采纳,获得10
8秒前
在水一方应助qin202569采纳,获得10
8秒前
zhegewa完成签到,获得积分10
8秒前
xun发布了新的文献求助200
8秒前
无花果应助blessed兰采纳,获得10
8秒前
鳗鱼悲完成签到,获得积分10
8秒前
Paradox发布了新的文献求助10
9秒前
仰望星空扭到腰完成签到,获得积分10
10秒前
明亮的大门完成签到,获得积分10
10秒前
认真柠檬完成签到,获得积分10
10秒前
fchen完成签到,获得积分10
10秒前
可爱的函函应助饼干玮玮采纳,获得10
10秒前
10秒前
852应助l98916采纳,获得10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Guidelines for Characterization of Gas Turbine Engine Total-Pressure, Planar-Wave, and Total-Temperature Inlet-Flow Distortion 300
Stackable Smart Footwear Rack Using Infrared Sensor 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604564
求助须知:如何正确求助?哪些是违规求助? 4012871
关于积分的说明 12425263
捐赠科研通 3693482
什么是DOI,文献DOI怎么找? 2036342
邀请新用户注册赠送积分活动 1069364
科研通“疑难数据库(出版商)”最低求助积分说明 953871