Building damage assessment for rapid disaster response with a deep object-based semantic change detection framework: From natural disasters to man-made disasters

计算机科学 一致性(知识库) 深度学习 卷积神经网络 特征(语言学) 对象(语法) 代表(政治) 人工智能 数据挖掘 遥感 地理 政治学 语言学 政治 哲学 法学
作者
Zhuo Zheng,Yanfei Zhong,Junjue Wang,Ailong Ma,Liangpei Zhang
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:265: 112636-112636 被引量:383
标识
DOI:10.1016/j.rse.2021.112636
摘要

Sudden-onset natural and man-made disasters represent a threat to the safety of human life and property. Rapid and accurate building damage assessment using bitemporal high spatial resolution (HSR) remote sensing images can quickly and safely provide us with spatial distribution information and statistics of the damage degree to assist with humanitarian assistance and disaster response. For building damage assessment, strong feature representation and semantic consistency are the keys to obtaining a high accuracy. However, the conventional object-based image analysis (OBIA) framework using a patch-based convolutional neural network (CNN) can guarantee semantic consistency, but with weak feature representation, while the Siamese fully convolutional network approach has strong feature representation capabilities but is semantically inconsistent. In this paper, we propose a deep object-based semantic change detection framework, called ChangeOS, for building damage assessment. To seamlessly integrate OBIA and deep learning, we adopt a deep object localization network to generate accurate building objects, in place of the superpixel segmentation commonly used in the conventional OBIA framework. Furthermore, the deep object localization network and deep damage classification network are integrated into a unified semantic change detection network for end-to-end building damage assessment. This also provides deep object features that can supply an object prior to the deep damage classification network for more consistent semantic feature representation. Object-based post-processing is adopted to further guarantee the semantic consistency of each object. The experimental results obtained on a global scale dataset including 19 natural disaster events and two local scale datasets including the Beirut port explosion event and the Bata military barracks explosion event show that ChangeOS is superior to the currently published methods in speed and accuracy, and has a superior generalization ability for man-made disasters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TINASO完成签到,获得积分10
刚刚
XIAOXIAOLI完成签到,获得积分10
刚刚
刚刚
yy完成签到,获得积分10
刚刚
喜悦一德发布了新的文献求助10
刚刚
李丽发布了新的文献求助10
刚刚
江一山发布了新的文献求助10
刚刚
SciGPT应助asda采纳,获得10
刚刚
necoe发布了新的文献求助30
1秒前
脑洞疼应助默默曼安采纳,获得10
1秒前
bkagyin应助Ganann采纳,获得10
1秒前
edtaa发布了新的文献求助10
1秒前
SUNYAOSUNYAO发布了新的文献求助10
1秒前
杜祖盛发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
格拉希尔完成签到,获得积分10
2秒前
yeahokk发布了新的文献求助10
3秒前
慕青应助yy采纳,获得10
3秒前
yy发布了新的文献求助10
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
jinke发布了新的文献求助10
3秒前
4秒前
L山间葱完成签到,获得积分20
4秒前
shan发布了新的文献求助10
4秒前
4秒前
4秒前
555发布了新的文献求助10
5秒前
浪子应助专注的书白采纳,获得10
5秒前
5秒前
完美世界应助盛夏如花采纳,获得10
5秒前
6秒前
江一山完成签到,获得积分20
6秒前
6秒前
Dyson Hou完成签到,获得积分10
7秒前
认真初之完成签到,获得积分10
7秒前
7秒前
夏沫完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836