Building damage assessment for rapid disaster response with a deep object-based semantic change detection framework: From natural disasters to man-made disasters

计算机科学 一致性(知识库) 深度学习 卷积神经网络 特征(语言学) 对象(语法) 代表(政治) 人工智能 数据挖掘 遥感 地理 政治学 语言学 政治 哲学 法学
作者
Zhuo Zheng,Yanfei Zhong,Junjue Wang,Ailong Ma,Liangpei Zhang
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:265: 112636-112636 被引量:360
标识
DOI:10.1016/j.rse.2021.112636
摘要

Sudden-onset natural and man-made disasters represent a threat to the safety of human life and property. Rapid and accurate building damage assessment using bitemporal high spatial resolution (HSR) remote sensing images can quickly and safely provide us with spatial distribution information and statistics of the damage degree to assist with humanitarian assistance and disaster response. For building damage assessment, strong feature representation and semantic consistency are the keys to obtaining a high accuracy. However, the conventional object-based image analysis (OBIA) framework using a patch-based convolutional neural network (CNN) can guarantee semantic consistency, but with weak feature representation, while the Siamese fully convolutional network approach has strong feature representation capabilities but is semantically inconsistent. In this paper, we propose a deep object-based semantic change detection framework, called ChangeOS, for building damage assessment. To seamlessly integrate OBIA and deep learning, we adopt a deep object localization network to generate accurate building objects, in place of the superpixel segmentation commonly used in the conventional OBIA framework. Furthermore, the deep object localization network and deep damage classification network are integrated into a unified semantic change detection network for end-to-end building damage assessment. This also provides deep object features that can supply an object prior to the deep damage classification network for more consistent semantic feature representation. Object-based post-processing is adopted to further guarantee the semantic consistency of each object. The experimental results obtained on a global scale dataset including 19 natural disaster events and two local scale datasets including the Beirut port explosion event and the Bata military barracks explosion event show that ChangeOS is superior to the currently published methods in speed and accuracy, and has a superior generalization ability for man-made disasters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孙凯欣发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
1秒前
2秒前
研友_VZG7GZ应助黑白采纳,获得10
2秒前
2秒前
3秒前
4秒前
包惜筠发布了新的文献求助10
4秒前
sxd发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
5秒前
xiaozhou发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
传奇3应助jscr采纳,获得10
6秒前
6秒前
6秒前
521科研菜鸟完成签到,获得积分20
6秒前
7秒前
Miracle完成签到,获得积分10
7秒前
7秒前
欣喜谷槐发布了新的文献求助10
7秒前
王美惠发布了新的文献求助10
7秒前
abc完成签到 ,获得积分10
7秒前
mudoo发布了新的文献求助10
8秒前
饺子完成签到,获得积分10
8秒前
英俊的胜发布了新的文献求助10
8秒前
核桃发布了新的文献求助10
8秒前
慕青应助rrjl采纳,获得10
9秒前
9秒前
cxcx发布了新的文献求助10
9秒前
勇敢牛牛完成签到 ,获得积分10
9秒前
hdskjahfi发布了新的文献求助10
10秒前
斯丹康完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5167443
求助须知:如何正确求助?哪些是违规求助? 4359422
关于积分的说明 13572960
捐赠科研通 4205794
什么是DOI,文献DOI怎么找? 2306607
邀请新用户注册赠送积分活动 1306223
关于科研通互助平台的介绍 1252822