Selective sensing and mechanism of patterned graphene-based sensors: Experiments and DFT calculations

石墨烯 材料科学 纳米技术 灵敏度(控制系统) 吸附 氧化石墨烯纸 光电子学 电子工程 化学 物理化学 工程类
作者
Xiaohui Ye,Ming Qi,Houyong Yang,Francis Sona Mediko,Qiang Hao,Yanling Yang,Chaozheng He
出处
期刊:Chemical Engineering Science [Elsevier]
卷期号:247: 117017-117017 被引量:28
标识
DOI:10.1016/j.ces.2021.117017
摘要

• Selective sensitivity of CO/NO/H 2 O-mixed gas was derived from topologic graphene. • The given topology can precisely detect one specific gas from mixed gases. • The topologic graphene had superb sensing performance with high GF of ~10 4 . • DFT was carried out to further understand the mechanism of selective sensing. Graphene with antidots shows great potential in wearable devices and highly sensitive sensors. In this paper, we fabricated the patterned graphenes of circle, square, and triangle by ultrafast laser processing. The given patterned graphene can precisely detect one specific gas from the CO/NO/H 2 O-mixed gases. The sensing performance results demonstrated that the circle patterned graphene (cir-graphene) was most sensitive to CO with the highest sensitivity with the gauge factor (GF) of 3.9 × 10 4 . For NO sensing, the triangle patterned graphene (tri-graphene) conducted the best results. The square patterned graphene (squ-graphene) was the most sensitive to H 2 O. The DFT calculations revealed that CO was chemical adsorbed on cir-graphene with the most negative adsorption energy (−3.638 eV). For NO sensing, tri-graphene performed best. While, the patterned graphene was not available to H 2 O sensing. This work offers a novel solution to next-generation wearable multifunctional sensors, and a new insight for the selective sensing mechanism.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
房天川发布了新的文献求助20
刚刚
然然发布了新的文献求助20
1秒前
是玥玥啊完成签到,获得积分10
1秒前
2秒前
Tonson完成签到,获得积分10
3秒前
达分歧完成签到 ,获得积分10
4秒前
林林完成签到 ,获得积分10
4秒前
跳跃猫咪完成签到 ,获得积分10
4秒前
Ayin完成签到,获得积分10
4秒前
acuis发布了新的文献求助10
5秒前
NNi发布了新的文献求助10
5秒前
5秒前
5秒前
忐忑的果汁完成签到 ,获得积分10
6秒前
6秒前
7秒前
ieeat发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
端正小猫完成签到,获得积分10
8秒前
志摩001完成签到,获得积分10
8秒前
9秒前
九陌发布了新的文献求助10
9秒前
yuilcl完成签到,获得积分10
9秒前
11秒前
JYAQI关注了科研通微信公众号
11秒前
11秒前
cx应助佳佳528采纳,获得10
12秒前
yenom完成签到,获得积分10
12秒前
隐形曼青应助kailan采纳,获得10
12秒前
王第一发布了新的文献求助10
12秒前
月是故乡明完成签到,获得积分10
12秒前
13秒前
yuilcl发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
13秒前
30完成签到 ,获得积分10
15秒前
乖不如野完成签到,获得积分10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5717982
求助须知:如何正确求助?哪些是违规求助? 5249617
关于积分的说明 15284035
捐赠科研通 4868135
什么是DOI,文献DOI怎么找? 2614009
邀请新用户注册赠送积分活动 1563957
关于科研通互助平台的介绍 1521400