A novel structural adaptive discrete grey prediction model and its application in forecasting renewable energy generation

计算机科学 粒子群优化 可再生能源 数学优化 网格 非线性系统 电力系统 机器学习 功率(物理) 数学 工程类 物理 几何学 量子力学 电气工程
作者
Wuyong Qian,Aodi Sui
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:186: 115761-115761 被引量:46
标识
DOI:10.1016/j.eswa.2021.115761
摘要

The rapidly growing renewable energy generation instigates stochastic volatility of electricity supply that may compromise the power grid's stability and increase the grid imbalance cost. Therefore, accurate mid-to-long term renewable energy generation forecasting is of great significance for integrating renewable energy systems with smart grid and energy strategic planning. For this purpose, a new structural adaptive discrete grey prediction model is proposed. Overall, the proposed model possesses three main contributions. Firstly, the introduction of nonlinear term and periodic term strengthens the ability of the traditional DGM (1,1) model to capture the nonlinear and linear development trend of time series and improves the adaptability of the grey prediction model to arbitrary periodic time series. Secondly, the emerging coefficients are determined by the particle swarm optimization algorithm and hold-out cross-validation method, and the adaptive selection of the model structure is realized. From the perspective of expert system, it reduces the need for modeling knowledge. Thirdly, the consistency of stretching, unbiasedness, and compatibility with other grey models are discussed, which further verified the feasibility and practicability of the proposed model. Besides, the performance of the proposed model is compared with those of a series of grey prediction models and non-grey prediction methods to verify the feasibility and superiority of this new approach by three real cases. The results indicate that the proposed model benefits from its adaptive structure and produces reliable predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
记忆缺失发布了新的文献求助10
1秒前
3秒前
3秒前
汉堡包应助smile采纳,获得10
3秒前
4秒前
苻莞发布了新的文献求助10
4秒前
lydiaabc发布了新的文献求助10
5秒前
勤劳的音响完成签到,获得积分10
5秒前
浩气长存完成签到 ,获得积分10
5秒前
5秒前
蓝灵完成签到,获得积分10
5秒前
zsk1122完成签到,获得积分10
5秒前
455完成签到,获得积分10
6秒前
6秒前
哇owao发布了新的文献求助10
6秒前
西门凡双完成签到,获得积分10
6秒前
暴走诺亚完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
魔真人关注了科研通微信公众号
7秒前
李健应助孟庆磊采纳,获得10
7秒前
7秒前
wefs完成签到,获得积分10
7秒前
8秒前
蓦然回首完成签到,获得积分10
8秒前
8秒前
木木完成签到,获得积分10
8秒前
ellen完成签到,获得积分20
9秒前
9秒前
yx_cheng应助111采纳,获得30
10秒前
fang完成签到,获得积分10
10秒前
粘豆包完成签到,获得积分10
10秒前
LHHH发布了新的文献求助10
11秒前
Mon发布了新的文献求助10
11秒前
善良易形完成签到,获得积分10
12秒前
12秒前
爱听歌的依秋完成签到,获得积分10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969222
求助须知:如何正确求助?哪些是违规求助? 3514124
关于积分的说明 11171948
捐赠科研通 3249361
什么是DOI,文献DOI怎么找? 1794799
邀请新用户注册赠送积分活动 875431
科研通“疑难数据库(出版商)”最低求助积分说明 804779