Microfluidics technologies have become a powerful tool in life science research laboratories over the past three decades. This review discusses three important segments of the field from origins and current status to future prospective: a) materials and microfabrication technologies from the field, b) research and development of essential microfluidic components and c) integration of components into complex microfluidic systems that will, according to some forecasts, play a key role in improving the quality of life for future generations. The most sophisticated microfluidic systems developed by now are Point-of-Care systems, that are based on Lab-on-Chip technologies. As these subfields are very extensive and go beyond the scope of this review, some carefully chosen additional review papers are provided.