光降解
光催化
材料科学
量子点
异质结
氮化硼
可见光谱
介孔材料
化学工程
光化学
纳米技术
催化作用
化学
光电子学
有机化学
工程类
作者
Gaoxia Zhang,Sha Chen,Yang Yang,Yang Liu,Lei Lei,Xigui Liu,Ruihao Xiao,Li Du,Danlian Huang,Min Cheng
标识
DOI:10.1016/j.envres.2021.111661
摘要
Metal organic frameworks (MOFs) have great potential for photocatalysis, but only possess moderate activity due to their slow charge transfer and low solar energy conversion. Herein, heterostructures photocatalysts constructed by boron nitride quantum dots (BNQDs) and MIL-100(Fe) (MNB) were successfully fabricated for overcoming these shortcomings. It was indicated that the composites possessed large surface area, mesoporous structure, and enhanced visible light absorption. The MNB photocatalysts exhibited excellent photocatalytic activity for tetracycline hydrochloride (TC-HCl) degradation under visible light irradiation. Compared with MIL-100(Fe), the photodegradation rate of TC-HCl by MNB-1 was 0.02383 min-1, which was 5.3 times higher than that of pure MIL-100(Fe). The close contact of MIL-100(Fe) with BNQDs and the synergistic effect between them were the main reasons for the improved photodegradation performance. This study reveals that a rational combination of MIL-100(Fe) and BNQDs can improve photocatalytic activity to enhance molecular oxygen activation. Therefore, it is reasonable to believe that quantum dots/MOFs photocatalysts have great potential in environmental remediation.
科研通智能强力驱动
Strongly Powered by AbleSci AI