Considering excess nitrites are detrimental to the human body and environment, designing a rapid, sensitive, and real-time quantitative determination for nitrite is of great significance for environmental preservation and public health. In this paper, Co3O4 nanoflowers coupled with ultrafine MoO3 nanoparticles (MoO3/Co3O4) are obtained via a hybrid electrochemical deposition strategy (HED). The as-designed MoO3/Co3O4/CC integrating electrode exhibits superior electrocatalytic properties towards nitrite oxidation, owing to the synergistic effect between MoO3 and Co3O4 caused by the heterostructure of MoO3/Co3O4. The electrode achieved a low response time of 2 s, an excellent sensitivity of 1704.1 μA mM−1 cm−2, and a low limit of detection of 0.075 μM (S/N = 3). Furthermore, the electrode displays promise for nitrite detection in complex food such as water and sausages samples. Our study will provide a significant strategy for the application of bimetallic heterostructure to explore the design of sensing interfaces.