Prediction of the number of metastatic axillary lymph nodes in breast cancer by radiomic signature based on dynamic contrast-enhanced MRI

列线图 医学 乳腺癌 腋窝淋巴结 逻辑回归 放射科 转移 磁共振成像 淋巴 肿瘤科 癌症 内科学 病理
作者
Lan Li,Tao Yu,Jianqing Sun,Shixi Jiang,Daihong Liu,Xiaoxia Wang,Jiuquan Zhang
出处
期刊:Acta Radiologica [SAGE Publishing]
卷期号:63 (8): 1014-1022 被引量:8
标识
DOI:10.1177/02841851211025857
摘要

The number of metastatic axillary lymph nodes (ALNs) play a crucial role in the staging, prognosis and therapy of patients with breast cancer.To predict the number of metastatic ALNs in breast cancer via radiomics.We enrolled 197 patients with breast cancer who underwent dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). A total of 3386 radiomic features were extracted from the early- and delayed-phase subtraction images. To classify the number of metastatic ALNs, logistic regression was used to develop a radiomic signature and nomogram.The radiomic signature were constructed to distinguish the N0 group from the N+ (metastatic ALNs ≥ 1) group, which yielded area under the curve (AUC) values of 0.82 and 0.81 in the training and test group, respectively. Based on the radiomic signature and BI-RADS category, a nomogram was further developed and showed excellent predictive performance with AUC values of 0.85 and 0.89 in the training and test groups, respectively. Another radiomic signature was constructed to distinguish the N1 (1-3 ALNs) group from the N2-3 (≥4 metastatic ALNs) group and showed encouraging performance with AUC values of 0.94 and 0.84 in training and test group, respectively.We developed a nomogram and a radiomic signature that can be used to predict ALN metastasis and distinguish the N1 from the N2-3 group. Both nomogram and radiomic signature may be potential tools to assist clinicians in assessing ALN metastasis in patients with breast cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
科研小亮完成签到,获得积分20
2秒前
3秒前
3秒前
3秒前
科研通AI6应助沉静的惠采纳,获得10
4秒前
情怀应助yaoyao采纳,获得10
5秒前
今昔完成签到 ,获得积分10
6秒前
村里傻小子完成签到,获得积分10
6秒前
喜文完成签到 ,获得积分10
6秒前
aoyo发布了新的文献求助20
7秒前
7秒前
Jasper应助秋之月采纳,获得20
8秒前
云端梦境发布了新的文献求助10
8秒前
飞飞发布了新的文献求助10
8秒前
扬灵兮完成签到,获得积分10
9秒前
9秒前
10秒前
ganxinran发布了新的文献求助10
10秒前
Duha完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
FashionBoy应助扬灵兮采纳,获得10
13秒前
跳跃的煜祺完成签到,获得积分10
13秒前
14秒前
14秒前
ding应助刻苦秋烟采纳,获得10
14秒前
15秒前
欣妹儿发布了新的文献求助10
15秒前
Jasper应助wsqg123采纳,获得10
15秒前
飞飞完成签到,获得积分10
15秒前
15秒前
16秒前
科研通AI5应助坦率听芹采纳,获得10
16秒前
16秒前
科研打工人完成签到,获得积分10
18秒前
张文博发布了新的文献求助10
18秒前
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5082475
求助须知:如何正确求助?哪些是违规求助? 4299854
关于积分的说明 13397214
捐赠科研通 4123637
什么是DOI,文献DOI怎么找? 2258551
邀请新用户注册赠送积分活动 1262782
关于科研通互助平台的介绍 1196720