复合数
脉冲(物理)
断层(地质)
自相关
噪音(视频)
谐波
方位(导航)
控制理论(社会学)
计算机科学
工程类
声学
算法
数学
物理
人工智能
地质学
控制(管理)
地震学
图像(数学)
统计
量子力学
作者
Jian Cheng,Yang Yu,Haidong Shao,Haiyang Pan,Jinde Zheng,Junsheng Cheng
标识
DOI:10.1016/j.isatra.2021.07.014
摘要
The impulse components of different periods in the composite fault signal of rolling bearing are extracted difficultly due to the background noise and the coupling of composite faults, which greatly affects the accuracy of composite fault diagnosis. To accurately extract the periodic impulse components from the composite fault signals, we introduce the theory of Ramanujan sum to generate the precise periodic components (PPCs). In order to comprehensively extract major periods in composite fault signals, the SOSO-maximum autocorrelation impulse harmonic to noise deconvolution (SOSO-MAIHND) method is proposed to reduce noise and enhance the relatively weak periodic impulses. Based on this, an enhanced periodic mode decomposition (EPMD) method is proposed. The experimental results indicate that the EPMD is an effective method for composite fault diagnosis of rolling bearings.
科研通智能强力驱动
Strongly Powered by AbleSci AI