极化子
氧化还原
氧气
法拉第效率
氧化物
电化学
共价键
化学物理
插层(化学)
化学
磁滞
电极
材料科学
纳米技术
无机化学
物理
物理化学
凝聚态物理
有机化学
量子力学
冶金
电子
作者
Iwnetim Abate,C. D. Pemmaraju,Se Young Kim,Kuan H. Hsu,Sami Sainio,Brian Moritz,John Vinson,Michael F. Toney,Wanli Yang,William E. Gent,Thomas Devereaux,Linda F. Nazar,William C. Chueh
摘要
Stabilizing high-valent redox couples and exotic electronic states necessitate an understanding of the stabilization mechanism. In oxides, whether they are being considered for energy storage or computing, highly oxidized oxide-anion species rehybridize to form short covalent bonds and are related to significant local structural distortions. In intercalation oxide electrodes for batteries, while such reorganization partially stabilizes oxygen redox, it also gives rise to substantial hysteresis. In this work, we investigate oxygen redox in layered Na2-XMn3O7, a positive electrode material with ordered Mn vacancies. We show that coulombic interactions between oxidized oxide-anions and the interlayer Na vacancies can disfavor rehybridization and stabilize hole polarons on oxygen at 4.2 V vs. Na/Na+. These coulombic interactions provide thermodynamic energy saving as large as O-O covalent bonding and enable ~ 40 mV voltage hysteresis over multiple electrochemical cycles with negligible voltage fade. Our results establish a complete picture of redox energetics by highlighting the role of coulombic interactions across several atomic distances and suggest avenues to stabilize highly oxidized oxygen for applications in energy storage and beyond.
科研通智能强力驱动
Strongly Powered by AbleSci AI