Quality Analysis Prediction and Discriminating Strawberry Maturity with a Hand-held Vis–NIR Spectrometer

偏最小二乘回归 主成分分析 数学 模式识别(心理学) 质量(理念) 决定系数 分光计 线性判别分析 可滴定酸 人工智能 化学计量学 统计 计算机科学 化学 食品科学 色谱法 物理 量子力学
作者
AbdelGawad Saad,Mostafa M. Azam,Baher M. A. Amer
出处
期刊:Food Analytical Methods [Springer Science+Business Media]
卷期号:15 (3): 689-699 被引量:19
标识
DOI:10.1007/s12161-021-02166-2
摘要

Predictability of maturity using quality attributes based on Vis–NIR spectra will be beneficial to farmers and consumers alike. Hand-held Vis–NIR spectrometers are a convenient, rapid, non-destructive method that can measure the quality attributes of many fruits and vegetables. The aim of this study is to evaluate the potential of a hand-held Vis–NIR spectrometer to classify the maturity stage and to predict the quality attributes of strawberry such as lightness (L*), chroma colour (C*), hue (H°), total soluble solids (TSS), titratable acidity (TA) and total polyphenol content (TPC). Principal component analysis (PCA) was used to distinguish strawberry at different maturities. Partial least squares regression (PLSR) models of internal quality attributes were developed in the spectral region between 550 and 900 nm for a hand-held NIR instrument. Several pretreatment methods were utilized including standard normal variate (SNV), multiplicative scatter correction (MSC), Savitzky–Golay algorithm smoothing and second derivative. Different pretreatment methods had effects on the classification performance of the PCA model. In general, SNV gave better results than the other preprocessing techniques. The coefficient of determination (R2) of the PLSR (SNV) model was calculated as 0.92, 0.93, 0.92, 0.96, 0.91 and 0.90 for L*, C*, H°, TSS, TA and TPC, respectively. Given the importance in assessing strawberry quality at different maturity stages, the use of a hand-held spectrometer, which are usable and rapid, should be considered a non-destructive analysis of strawberry quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鲤鱼凛完成签到,获得积分20
1秒前
酆芷蕊发布了新的文献求助10
1秒前
1秒前
阿若完成签到,获得积分10
2秒前
tetrakis发布了新的文献求助10
2秒前
Ren发布了新的文献求助10
2秒前
香蕉觅云应助牛超采纳,获得10
2秒前
黄昏12123发布了新的文献求助10
2秒前
2秒前
可爱的函函应助喵咪西西采纳,获得10
3秒前
szj发布了新的文献求助10
3秒前
搜集达人应助天蓝采纳,获得30
4秒前
5秒前
5秒前
Flz完成签到,获得积分20
5秒前
5秒前
八十八夜的茶摘完成签到,获得积分10
6秒前
6秒前
6秒前
善学以致用应助worried采纳,获得10
6秒前
6秒前
啥,这都是啥完成签到,获得积分10
6秒前
Orange应助cloud采纳,获得10
7秒前
金金发布了新的文献求助10
7秒前
斯文败类应助加油小海豚采纳,获得10
7秒前
8秒前
8秒前
9秒前
FashionBoy应助325715采纳,获得10
9秒前
浮游应助ll采纳,获得10
9秒前
隋阳发布了新的文献求助10
10秒前
10秒前
充电宝应助Flz采纳,获得10
10秒前
优雅醉蓝完成签到,获得积分20
10秒前
10秒前
wzppp发布了新的文献求助10
11秒前
钝感力发布了新的文献求助10
11秒前
你没放假完成签到,获得积分10
11秒前
12秒前
斯文败类应助majf采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5193179
求助须知:如何正确求助?哪些是违规求助? 4375858
关于积分的说明 13627334
捐赠科研通 4230610
什么是DOI,文献DOI怎么找? 2320518
邀请新用户注册赠送积分活动 1318864
关于科研通互助平台的介绍 1269183