亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A physics-informed machine learning method for predicting grain structure characteristics in directed energy deposition

人工神经网络 过程(计算) 沉积(地质) 计算机科学 因科镍合金 热的 人工智能 机械工程 机器学习 材料科学 算法 工程类 物理 气象学 古生物学 复合材料 沉积物 操作系统 生物 合金
作者
Dmitriy Kats,Zhidong Wang,Zhengtao Gan,Wing Kam Liu,Gregory J. Wagner,Yuan Lian
出处
期刊:Computational Materials Science [Elsevier BV]
卷期号:202: 110958-110958 被引量:35
标识
DOI:10.1016/j.commatsci.2021.110958
摘要

Directed energy deposition (DED) is an advanced additive manufacturing technology for the fabrication of near-net-shape metal parts with complex geometries and high performance metrics. Studying the grain structure evolution during the process is pivotal to evaluating and tailoring the as-built products’ mechanical properties. However, it is time-consuming to simulate the multi-layer deposition process using the physics-based numerical model to optimize the process parameters for achieving the desired microstructure. In this paper, a physics-informed machine learning algorithm to predict the grain structure in the DED process is proposed. To generate training data for the machine learning algorithm, we use an experimentally validated cellular automaton finite volume method (CAFVM) for DED Inconel 718, where CA is applied to model the grain structure and FVM to simulate the heat transfer. We develop a neural network model to identify the correlation between the local thermal features and their corresponding grain structure characteristics. The inputs and outputs of the neural network (NN) model are selected based on the governing physics, and a novel way to extract them is proposed. The NN model can quickly predict the grain structure characteristics with the local thermal data for thin-wall builds, and the predictions are in good agreement with the numerical simulation results. We expect the proposed method can benefit other metal additive manufacturing technologies to formulate efficient and accurate process-structure relationships and in-process feedback control.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
15秒前
小张完成签到 ,获得积分10
20秒前
可耐的冰萍完成签到,获得积分10
27秒前
充电宝应助干净涵梅采纳,获得10
38秒前
40秒前
43秒前
46秒前
47秒前
李李发布了新的文献求助10
53秒前
科研通AI5应助李李采纳,获得10
1分钟前
爱笑的毛衣完成签到,获得积分10
1分钟前
太叔丹翠完成签到 ,获得积分10
1分钟前
沉默白猫完成签到 ,获得积分10
1分钟前
1分钟前
sowhat完成签到 ,获得积分10
1分钟前
孙老师完成签到 ,获得积分10
1分钟前
盛事不朽完成签到 ,获得积分10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
FashionBoy应助科研通管家采纳,获得10
1分钟前
羞涩的傲菡完成签到,获得积分10
1分钟前
1分钟前
Hung发布了新的文献求助10
1分钟前
1分钟前
Lyncon完成签到,获得积分10
1分钟前
Milton_z完成签到 ,获得积分0
1分钟前
Hung完成签到,获得积分10
2分钟前
tingyeh完成签到,获得积分10
2分钟前
2分钟前
两个我完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
务实书包完成签到,获得积分10
2分钟前
2分钟前
2分钟前
3分钟前
英姑应助科研通管家采纳,获得10
3分钟前
打打应助科研通管家采纳,获得10
3分钟前
3分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990049
求助须知:如何正确求助?哪些是违规求助? 3532108
关于积分的说明 11256354
捐赠科研通 3270976
什么是DOI,文献DOI怎么找? 1805166
邀请新用户注册赠送积分活动 882270
科研通“疑难数据库(出版商)”最低求助积分说明 809228