A physics-informed machine learning method for predicting grain structure characteristics in directed energy deposition

人工神经网络 过程(计算) 沉积(地质) 计算机科学 因科镍合金 热的 人工智能 机械工程 机器学习 材料科学 算法 工程类 物理 气象学 古生物学 复合材料 沉积物 操作系统 生物 合金
作者
Dmitriy Kats,Zhidong Wang,Zhengtao Gan,Wing Kam Liu,Gregory J. Wagner,Yuan Lian
出处
期刊:Computational Materials Science [Elsevier BV]
卷期号:202: 110958-110958 被引量:35
标识
DOI:10.1016/j.commatsci.2021.110958
摘要

Directed energy deposition (DED) is an advanced additive manufacturing technology for the fabrication of near-net-shape metal parts with complex geometries and high performance metrics. Studying the grain structure evolution during the process is pivotal to evaluating and tailoring the as-built products’ mechanical properties. However, it is time-consuming to simulate the multi-layer deposition process using the physics-based numerical model to optimize the process parameters for achieving the desired microstructure. In this paper, a physics-informed machine learning algorithm to predict the grain structure in the DED process is proposed. To generate training data for the machine learning algorithm, we use an experimentally validated cellular automaton finite volume method (CAFVM) for DED Inconel 718, where CA is applied to model the grain structure and FVM to simulate the heat transfer. We develop a neural network model to identify the correlation between the local thermal features and their corresponding grain structure characteristics. The inputs and outputs of the neural network (NN) model are selected based on the governing physics, and a novel way to extract them is proposed. The NN model can quickly predict the grain structure characteristics with the local thermal data for thin-wall builds, and the predictions are in good agreement with the numerical simulation results. We expect the proposed method can benefit other metal additive manufacturing technologies to formulate efficient and accurate process-structure relationships and in-process feedback control.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
细腻老四发布了新的文献求助10
刚刚
刚刚
刚刚
赛特新思发布了新的文献求助50
1秒前
蛙蛙完成签到 ,获得积分10
1秒前
2秒前
无私的梦凡完成签到,获得积分10
3秒前
3秒前
当当发布了新的文献求助10
3秒前
学问完成签到,获得积分10
3秒前
浮游应助zhx采纳,获得10
4秒前
4秒前
4秒前
4秒前
wr0112完成签到,获得积分10
5秒前
Esten完成签到,获得积分10
5秒前
铲子完成签到,获得积分10
6秒前
四十四次日落完成签到,获得积分10
6秒前
6秒前
mauve完成签到 ,获得积分10
6秒前
大神完成签到,获得积分0
6秒前
lxu110完成签到,获得积分20
7秒前
7秒前
zsgved完成签到,获得积分10
7秒前
8秒前
王东完成签到,获得积分10
8秒前
bkagyin应助sunshitao采纳,获得10
9秒前
东风徐来发布了新的文献求助10
9秒前
我是老大应助野性的沉鱼采纳,获得10
9秒前
Joey发布了新的文献求助10
9秒前
9秒前
10秒前
samantha完成签到,获得积分10
10秒前
越红完成签到,获得积分10
10秒前
潇洒的不可完成签到,获得积分10
10秒前
香蕉觅云应助雨霧雲采纳,获得10
10秒前
11秒前
wxt发布了新的文献求助10
11秒前
11秒前
fanfan发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5069021
求助须知:如何正确求助?哪些是违规求助? 4290502
关于积分的说明 13367811
捐赠科研通 4110451
什么是DOI,文献DOI怎么找? 2250993
邀请新用户注册赠送积分活动 1256182
关于科研通互助平台的介绍 1188650