Conductance-based dynamic causal modeling: A mathematical review of its application to cross-power spectral densities

计算机科学 因果模型 口译(哲学) 光学(聚焦) 实验数据 贝叶斯概率 人工智能 数学模型 数据科学 理论计算机科学 机器学习 物理 数学 光学 统计 程序设计语言 量子力学
作者
Inês Pereira,Stefan Frässle,Jakob Heinzle,Dario Schöbi,Cao Tri,Moritz Gruber,Klaas Ε. Stephan
出处
期刊:NeuroImage [Elsevier BV]
卷期号:245: 118662-118662 被引量:15
标识
DOI:10.1016/j.neuroimage.2021.118662
摘要

Dynamic Causal Modeling (DCM) is a Bayesian framework for inferring on hidden (latent) neuronal states, based on measurements of brain activity. Since its introduction in 2003 for functional magnetic resonance imaging data, DCM has been extended to electrophysiological data, and several variants have been developed. Their biophysically motivated formulations make these models promising candidates for providing a mechanistic understanding of human brain dynamics, both in health and disease. However, due to their complexity and reliance on concepts from several fields, fully understanding the mathematical and conceptual basis behind certain variants of DCM can be challenging. At the same time, a solid theoretical knowledge of the models is crucial to avoid pitfalls in the application of these models and interpretation of their results. In this paper, we focus on one of the most advanced formulations of DCM, i.e. conductance-based DCM for cross-spectral densities, whose components are described across multiple technical papers. The aim of the present article is to provide an accessible exposition of the mathematical background, together with an illustration of the model's behavior. To this end, we include step-by-step derivations of the model equations, point to important aspects in the software implementation of those models, and use simulations to provide an intuitive understanding of the type of responses that can be generated and the role that specific parameters play in the model. Furthermore, all code utilized for our simulations is made publicly available alongside the manuscript to allow readers an easy hands-on experience with conductance-based DCM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kangjie123完成签到,获得积分10
1秒前
yangxi完成签到,获得积分20
1秒前
不攻自破发布了新的文献求助10
2秒前
NexusExplorer应助lili采纳,获得10
3秒前
5秒前
桐桐应助小情绪采纳,获得100
7秒前
思源应助wuchang采纳,获得10
8秒前
8秒前
8秒前
英俊的流沙完成签到,获得积分10
10秒前
学术熊完成签到,获得积分10
10秒前
刘霞发布了新的文献求助10
12秒前
小夏发布了新的文献求助10
12秒前
orixero应助zzh采纳,获得10
12秒前
Arvin发布了新的文献求助10
12秒前
草木发布了新的文献求助10
12秒前
99668完成签到,获得积分10
12秒前
13秒前
斯文败类应助辛坦夫采纳,获得10
13秒前
脑洞疼应助橙子采纳,获得10
13秒前
14秒前
8R60d8应助etheneee采纳,获得10
14秒前
路内里发布了新的文献求助10
14秒前
dongyl完成签到,获得积分10
16秒前
单薄靖儿完成签到,获得积分10
16秒前
kmo发布了新的文献求助10
16秒前
乐观若烟发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
17秒前
悟空完成签到,获得积分10
18秒前
香蕉觅云应助mmyhn采纳,获得10
18秒前
轩辕沛柔发布了新的文献求助10
18秒前
Han发布了新的文献求助10
19秒前
dfg发布了新的文献求助10
19秒前
Arvin完成签到,获得积分10
19秒前
王雯雯发布了新的文献求助10
19秒前
李爱国应助老10采纳,获得10
19秒前
汉堡包应助学术熊采纳,获得10
20秒前
Bear发布了新的文献求助10
20秒前
啦啦啦完成签到,获得积分10
20秒前
郑雪红完成签到,获得积分10
21秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959531
求助须知:如何正确求助?哪些是违规求助? 3505774
关于积分的说明 11125924
捐赠科研通 3237671
什么是DOI,文献DOI怎么找? 1789239
邀请新用户注册赠送积分活动 871623
科研通“疑难数据库(出版商)”最低求助积分说明 802902