Conductance-based dynamic causal modeling: A mathematical review of its application to cross-power spectral densities

计算机科学 因果模型 口译(哲学) 光学(聚焦) 实验数据 贝叶斯概率 人工智能 数学模型 数据科学 理论计算机科学 机器学习 物理 数学 光学 统计 程序设计语言 量子力学
作者
Inês Pereira,Stefan Frässle,Jakob Heinzle,Dario Schöbi,Cao Tri,Moritz Gruber,Klaas Ε. Stephan
出处
期刊:NeuroImage [Elsevier]
卷期号:245: 118662-118662 被引量:15
标识
DOI:10.1016/j.neuroimage.2021.118662
摘要

Dynamic Causal Modeling (DCM) is a Bayesian framework for inferring on hidden (latent) neuronal states, based on measurements of brain activity. Since its introduction in 2003 for functional magnetic resonance imaging data, DCM has been extended to electrophysiological data, and several variants have been developed. Their biophysically motivated formulations make these models promising candidates for providing a mechanistic understanding of human brain dynamics, both in health and disease. However, due to their complexity and reliance on concepts from several fields, fully understanding the mathematical and conceptual basis behind certain variants of DCM can be challenging. At the same time, a solid theoretical knowledge of the models is crucial to avoid pitfalls in the application of these models and interpretation of their results. In this paper, we focus on one of the most advanced formulations of DCM, i.e. conductance-based DCM for cross-spectral densities, whose components are described across multiple technical papers. The aim of the present article is to provide an accessible exposition of the mathematical background, together with an illustration of the model's behavior. To this end, we include step-by-step derivations of the model equations, point to important aspects in the software implementation of those models, and use simulations to provide an intuitive understanding of the type of responses that can be generated and the role that specific parameters play in the model. Furthermore, all code utilized for our simulations is made publicly available alongside the manuscript to allow readers an easy hands-on experience with conductance-based DCM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Kelvin.Tsi完成签到 ,获得积分10
刚刚
Island发布了新的文献求助10
1秒前
hu970发布了新的文献求助10
1秒前
九九发布了新的文献求助10
1秒前
123456完成签到,获得积分10
1秒前
BareBear应助龙妍琳采纳,获得10
1秒前
赘婿应助wary采纳,获得10
2秒前
小蘑菇应助wary采纳,获得10
2秒前
上官若男应助wary采纳,获得10
2秒前
李爱国应助木子采纳,获得10
2秒前
烟花应助马佳凯采纳,获得10
2秒前
2秒前
LYL完成签到,获得积分10
3秒前
3秒前
得意凡人完成签到,获得积分10
3秒前
3秒前
害怕的擎宇完成签到,获得积分10
4秒前
柳絮完成签到,获得积分20
4秒前
5秒前
赫连烙发布了新的文献求助10
5秒前
目遇给目遇的求助进行了留言
6秒前
Arnold发布了新的文献求助10
7秒前
在九月完成签到 ,获得积分10
7秒前
selfevidbet发布了新的文献求助30
7秒前
通~发布了新的文献求助10
7秒前
靓仔完成签到,获得积分10
7秒前
妙手回春板蓝根完成签到,获得积分10
7秒前
8秒前
11完成签到,获得积分10
9秒前
1111完成签到,获得积分10
9秒前
777完成签到,获得积分10
10秒前
junzilan发布了新的文献求助10
10秒前
10秒前
sun应助leave采纳,获得20
10秒前
10秒前
11秒前
11秒前
Loooong应助小房子采纳,获得10
12秒前
12秒前
云_123完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762