数学
海森伯群
磁场
操作员(生物学)
拉普拉斯算子
类型(生物学)
无穷
数学分析
纯数学
物理
量子力学
生态学
生物化学
化学
抑制因子
生物
转录因子
基因
作者
Biagio Cassano,Valentina Franceschi,David Krejčiřı́k,Dario Prandi
标识
DOI:10.1080/03605302.2023.2191326
摘要
In this article, we introduce a notion of magnetic field in the Heisenberg group and we study its influence on spectral properties of the corresponding magnetic (sub-elliptic) Laplacian. We show that uniform magnetic fields uplift the bottom of the spectrum. For magnetic fields vanishing at infinity, including Aharonov–Bohm potentials, we derive magnetic improvements to a variety of Hardy-type inequalities for the Heisenberg sub-Laplacian. In particular, we establish a sub-Riemannian analogue of Laptev and Weidl sub-criticality result for magnetic Laplacians in the plane. Instrumental for our argument is the validity of a Hardy-type inequality for the Folland–Stein operator, that we prove in this article and has an interest on its own.
科研通智能强力驱动
Strongly Powered by AbleSci AI