非负矩阵分解
塔克分解
多线性映射
初始化
矩阵分解
乘法函数
张量分解
因式分解
张量(固有定义)
分解
扩展(谓词逻辑)
计算机科学
趋同(经济学)
数学
算法
应用数学
数学优化
纯数学
数学分析
生态学
特征向量
物理
量子力学
经济
生物
程序设计语言
经济增长
作者
Yong‐Deok Kim,Seungjin Choi
标识
DOI:10.1109/cvpr.2007.383405
摘要
Nonnegative tensor factorization (NTF) is a recent multiway (multilinear) extension of nonnegative matrix factorization (NMF), where nonnegativity constraints are imposed on the CANDECOMP/PARAFAC model. In this paper we consider the Tucker model with nonnegativity constraints and develop a new tensor factorization method, referred to as nonnegative Tucker decomposition (NTD). The main contributions of this paper include: (1) multiplicative updating algorithms for NTD; (2) an initialization method for speeding up convergence; (3) a sparseness control method in tensor factorization. Through several computer vision examples, we show the useful behavior of the NTD, over existing NTF and NMF methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI