吸附
金属有机骨架
化学
氢气储存
氢溢流
活性炭
氢
无机化学
多孔性
气体分离
化学工程
有机化学
生物化学
膜
工程类
作者
Yingwei Li,Ralph T. Yang
出处
期刊:Langmuir
[American Chemical Society]
日期:2007-11-22
卷期号:23 (26): 12937-12944
被引量:571
摘要
Gas adsorption experiments have been carried out on a zinc benzenetribenzoate metal−organic framework material, MOF-177. Hydrogen adsorption on MOF-177 at 298 K and 10 MPa gives an adsorption capacity of ∼0.62 wt %, which is among the highest hydrogen storage capacities reported in porous materials at ambient temperatures. The heats of adsorption for H2 on MOF-177 were −11.3 to −5.8 kJ/mol. By adding a H2 dissociating catalyst and using our bridge building technique to build carbon bridges for hydrogen spillover, the hydrogen adsorption capacity in MOF-177 was enhanced by a factor of ∼2.5, to 1.5 wt % at 298 K and 10 MPa, and the adsorption was reversible. N2 and O2 adsorption measurements showed that O2 was adsorbed more favorably than N2 on MOF-177 with a selectivity of ∼1.8 at 1 atm and 298 K, which makes MOF-177 a promising candidate for air separation. The isotherm was linear for O2 while being concave for N2. Water vapor adsorption studies indicated that MOF-177 adsorbed up to ∼10 wt % H2O at 298 K. The framework structure of MOF-177 was not stable upon H2O adsorption, which decomposed after exposure to ambient air in 3 days. All the results suggested that MOF-177 could be a potentially promising material for gas separation and storage applications at ambient temperature (under dry conditions or with predrying).
科研通智能强力驱动
Strongly Powered by AbleSci AI