降维
非线性降维
嵌入
最大值和最小值
聚类分析
等距映射
维数之咒
非线性系统
计算机科学
还原(数学)
扩散图
可视化
人工智能
数学
模式识别(心理学)
算法
物理
量子力学
几何学
数学分析
作者
Sam T. Roweis,Lawrence K. Saul
出处
期刊:Science
[American Association for the Advancement of Science (AAAS)]
日期:2000-12-22
卷期号:290 (5500): 2323-2326
被引量:14501
标识
DOI:10.1126/science.290.5500.2323
摘要
Many areas of science depend on exploratory data analysis and visualization. The need to analyze large amounts of multivariate data raises the fundamental problem of dimensionality reduction: how to discover compact representations of high-dimensional data. Here, we introduce locally linear embedding (LLE), an unsupervised learning algorithm that computes low-dimensional, neighborhood-preserving embeddings of high-dimensional inputs. Unlike clustering methods for local dimensionality reduction, LLE maps its inputs into a single global coordinate system of lower dimensionality, and its optimizations do not involve local minima. By exploiting the local symmetries of linear reconstructions, LLE is able to learn the global structure of nonlinear manifolds, such as those generated by images of faces or documents of text.
科研通智能强力驱动
Strongly Powered by AbleSci AI