羟嗪
西替利嗪
特非那定
药理学
受体
化学
组胺H1受体
血脑屏障
镇静
中枢神经系统
敌手
医学
内科学
生物化学
作者
Adele M. Snowman,Solomon H. Snyder
标识
DOI:10.1016/s0091-6749(05)80248-9
摘要
First-generation H 1 -antagonist antihistamines, such as hydroxyzine, have the ability to cross the blood-brain barrier and cause sedation, which limits their usefulness in the treatment of allergic disorders. Cetirizine, a carboxylated metabolite of hydroxyzine, possesses the parent compound's antihistaminic activity but causes less sedation. We compared the activity of cetirizine at central H 1 sites with that of hydroxyzine and terfenadine. We also compared the ability of cetirizine and three antihistamines to cross the blood-brain barrier. In each case we found that the drug's potency at H 1 receptors in the central nervous system was similar to its activity in displacing H 1 receptors in the lung. However, the selectivity for H 1 receptors varied widely from drug to drug. Cetirizine did not bind at any of the receptors investigated, except H 1 sites, even at concentrations as high as 10 μmol/L. Hydroxyzine and dexchlorpheniramine and, to a lesser extent, terfenadine crossed the blood-brain barrier in significant amounts. Cetirizine passed into the central nervous system only half as readily as terfenadine. These findings suggest that cetirizine's low incidence of sedative effects is most likely caused by its diminished potential to cross the blood-brain barrier and also may be partly the result of its greater selectivity for H 1 receptors, compared with its effect at other receptors that may be involved in sedation.
科研通智能强力驱动
Strongly Powered by AbleSci AI