模糊逻辑
马氏距离
聚类分析
度量(数据仓库)
椭球体
星团(航天器)
数学
代表(政治)
算法
欧几里德距离
计算机科学
人工智能
数据挖掘
物理
政治
法学
程序设计语言
政治学
天文
作者
B. Ojeda‐Magaña,R. Ruelas,M.A. Corona-Nakamura,Diego Andina
出处
期刊:World Automation Congress
日期:2006-07-01
被引量:21
标识
DOI:10.1109/wac.2006.376056
摘要
In this work we propose to use the Gustafson-Kessel (GK) algorithm within the PFCM (Possibilistic Fuzzy c-Means), such that the cluster distributions have a better adaptation with the natural distribution of the data. The PFCM, proposed by Pal et al. on 2005, is founded on the fuzzy membership degrees of the FCM and the typicality values of the PCM. Nevertheless, this algorithm uses the Euclidian distance which gives circular clusters. So, incorporating the GK algorithm and the Mahalanobis measure for the calculus of the distance, we have the possibility to get ellipsoidal forms as well, allowing a better representation of the clusters.
科研通智能强力驱动
Strongly Powered by AbleSci AI