豁免特权
免疫系统
特权(计算)
免疫学
炎症
中枢神经系统
神经科学
获得性免疫系统
生物
免疫
医学
计算机科学
计算机安全
作者
Ian Galea,Ingo Bechmann,V. Hugh Perry
标识
DOI:10.1016/j.it.2006.11.004
摘要
The ‘immune privilege’ of the central nervous system (CNS) is indispensable for damage limitation during inflammation in a sensitive organ with poor regenerative capacity. It is a longstanding notion which, over time, has acquired several misconceptions and a lack of precision in its definition. In this article, we address these issues and re-define CNS immune privilege in the light of recent data. We show how it is far from absolute, and how it varies with age and brain region. Immune privilege in the CNS is often mis-attributed wholly to the blood–brain barrier. We discuss the pivotal role of the specialization of the afferent arm of adaptive immunity in the brain, which results in a lack of cell-mediated antigen drainage to the cervical lymph nodes although soluble drainage to these nodes is well described. It is now increasingly recognized how immune privilege is maintained actively as a result of the immunoregulatory characteristics of the CNS-resident cells and their microenvironment. The ‘immune privilege’ of the central nervous system (CNS) is indispensable for damage limitation during inflammation in a sensitive organ with poor regenerative capacity. It is a longstanding notion which, over time, has acquired several misconceptions and a lack of precision in its definition. In this article, we address these issues and re-define CNS immune privilege in the light of recent data. We show how it is far from absolute, and how it varies with age and brain region. Immune privilege in the CNS is often mis-attributed wholly to the blood–brain barrier. We discuss the pivotal role of the specialization of the afferent arm of adaptive immunity in the brain, which results in a lack of cell-mediated antigen drainage to the cervical lymph nodes although soluble drainage to these nodes is well described. It is now increasingly recognized how immune privilege is maintained actively as a result of the immunoregulatory characteristics of the CNS-resident cells and their microenvironment.
科研通智能强力驱动
Strongly Powered by AbleSci AI