Biomechanical properties of high-toughness double network hydrogels

材料科学 自愈水凝胶 复合材料 韧性 断裂韧性 生物医学工程 高分子化学 工程类
作者
Kazunori Yasuda,Jian Ping Gong,Yoshinori Katsuyama,Atsushi Nakayama,Yoshie Tanabe,Eiji Kondo,Masaru Ueno,Yoshihito Osada
出处
期刊:Biomaterials [Elsevier]
卷期号:26 (21): 4468-4475 被引量:311
标识
DOI:10.1016/j.biomaterials.2004.11.021
摘要

This study evaluated the wear property of four novel double-network (DN) hydrogels, which was composed of two kinds of hydrophilic polymers, using pin-on-flat wear testing. The gels involve PAMPS–PAAm gel which consists of poly(2-acrylamide-2-metyl-propane sulfonic acid) and polyacrylamide, PAMPS–PDAAAm gel which consists of poly(2-acrylamide-2-metyl-propane sulfonic acid) and poly(N,N′-dimetyl acrylamide), Cellulose/PDMAAm gel which consists of bacterial Cellulose and poly dimetyl-acrylamide, and Cellulose–Gelatin gel which consists of bacterial Cellulose and Gelatin. Ultra-high molecular weight polyethylene (UHMWPE) was used as a control of a clinically available material. Using a reciprocating apparatus, 106 cycles of friction between a flat specimen and ceramic pin were repeated in water under a contact pressure of 0.1 MPa. To determine the depth and the roughness of the concave lesion created by wear, a confocal laser microscope was used. As a result, the maximum wear depth of the PAMPS–PDMAAm gel (3.20 μm) was minimal in the five materials, while there was no significant difference compared to UHMWPE. There were significant differences between UHMWPE and one of the other three gels. The PAMPS–PAAm gel (9.50 μm), the Cellulose–PDMAAm gel (7.80 μm), and the Cellulose–Gelatin gel (1302.40 μm). This study demonstrated that the PAMPS–PDMAAm DN gel has an amazing wear property as a hydrogel that is comparable to the UHMWPE. In addition, the PAMPS–PAAm and Cellulose–PDMAAm DN gels are also resistant to wear to greater degrees than conventionally reported hydrogels. On the other hand, this study showed that the Cellulose–Gelatin DN gel was not resistant to wear.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田田田发布了新的文献求助10
刚刚
刚刚
小马甲应助东方采纳,获得10
1秒前
1秒前
FYJY发布了新的文献求助10
2秒前
cocolu给li的求助进行了留言
2秒前
3秒前
哈人的猫发布了新的文献求助10
6秒前
7秒前
9秒前
不安青牛应助lumos采纳,获得10
11秒前
姜惠发布了新的文献求助10
12秒前
13秒前
甄晓亦完成签到,获得积分10
13秒前
13秒前
周周发布了新的文献求助10
13秒前
14秒前
15秒前
16秒前
1010发布了新的文献求助10
16秒前
传奇3应助长情的觅翠采纳,获得10
17秒前
17秒前
迟大猫应助明芬采纳,获得10
18秒前
吴昊东发布了新的文献求助10
18秒前
kingwill应助姜惠采纳,获得20
18秒前
ddfighting完成签到,获得积分10
19秒前
19秒前
斯文败类应助R66采纳,获得10
19秒前
fff发布了新的文献求助10
19秒前
20秒前
大卫发布了新的文献求助10
20秒前
东方发布了新的文献求助10
20秒前
20秒前
20秒前
FashionBoy应助落羽采纳,获得10
21秒前
FashionBoy应助大喜喜采纳,获得10
21秒前
21秒前
不安青牛应助boltos采纳,获得10
21秒前
pophoo发布了新的文献求助10
22秒前
舒心的晟睿完成签到,获得积分10
22秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3490736
求助须知:如何正确求助?哪些是违规求助? 3077538
关于积分的说明 9149233
捐赠科研通 2769733
什么是DOI,文献DOI怎么找? 1519934
邀请新用户注册赠送积分活动 704390
科研通“疑难数据库(出版商)”最低求助积分说明 702148