‘Giant’ CdSe/CdS Core/Shell Nanocrystal Quantum Dots As Efficient Electroluminescent Materials: Strong Influence of Shell Thickness on Light-Emitting Diode Performance

纳米晶 材料科学 量子点 光电子学 电致发光 发光二极管 单层 二极管 氧化铟锡 壳体(结构) 量子效率 阳极 纳米技术 图层(电子) 复合材料 电极 化学 物理化学
作者
Bhola N. Pal,Yagnaseni Ghosh,Sergio Brovelli,Rawiwan Laocharoensuk,Victor I. Klimov,Jennifer A. Hollingsworth,Han Htoon
出处
期刊:Nano Letters [American Chemical Society]
卷期号:12 (1): 331-336 被引量:396
标识
DOI:10.1021/nl203620f
摘要

We use a simple device architecture based on a poly(3,4-ethylendioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)-coated indium tin oxide anode and a LiF/Al cathode to assess the effects of shell thickness on the properties of light-emitting diodes (LEDs) comprising CdSe/CdS core/shell nanocrystal quantum dots (NQDs) as the emitting layer. Specifically, we are interested in determining whether LEDs based on thick-shell nanocrystals, so-called "giant" NQDs, afford enhanced performance compared to their counterparts incorporating thin-shell systems. We observe significant improvements in device performance as a function of increasing shell thickness. While the turn-on voltage remains approximately constant for all shell thicknesses (from 4 to 16 CdS monolayers), external quantum efficiency and maximum luminance are found to be about one order of magnitude higher for thicker shell nanocrystals (≥13 CdS monolayers) compared to thinner shell structures (<9 CdS monolayers). The thickest-shell nanocrystals (16 monolayers of CdS) afforded an external quantum efficiency and luminance of 0.17% and 2000 Cd/m(2), respectively, with a remarkably low turn-on voltage of ~3.0 V.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YAO发布了新的文献求助10
3秒前
chen发布了新的文献求助10
3秒前
bkagyin应助杰bro采纳,获得10
3秒前
1218完成签到 ,获得积分10
6秒前
CC发布了新的文献求助10
6秒前
hongxuezhi完成签到,获得积分10
7秒前
7秒前
wQ1ng应助777采纳,获得10
9秒前
10秒前
clamon完成签到,获得积分10
11秒前
科研通AI5应助雷雷采纳,获得10
11秒前
soss完成签到,获得积分10
12秒前
Ldq发布了新的文献求助10
13秒前
mountainbike完成签到,获得积分10
14秒前
15秒前
菜鸡5号发布了新的文献求助20
16秒前
17秒前
tianyi2347发布了新的文献求助10
18秒前
陈chen发布了新的文献求助10
19秒前
闪闪书桃完成签到,获得积分10
19秒前
科研通AI5应助zzww采纳,获得10
20秒前
27秒前
纯乏完成签到,获得积分10
28秒前
小米发布了新的文献求助10
31秒前
耳东陈完成签到 ,获得积分10
31秒前
小落完成签到 ,获得积分10
32秒前
SciGPT应助HJJHJH采纳,获得10
33秒前
且欣且行完成签到 ,获得积分10
33秒前
雷雷发布了新的文献求助10
33秒前
闪亮的季节完成签到,获得积分10
33秒前
35秒前
37秒前
chen完成签到,获得积分10
38秒前
sam发布了新的文献求助10
38秒前
38秒前
38秒前
39秒前
默言发布了新的文献求助10
40秒前
kid1912完成签到,获得积分0
41秒前
ggggg完成签到 ,获得积分10
41秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5208961
求助须知:如何正确求助?哪些是违规求助? 4386288
关于积分的说明 13660545
捐赠科研通 4245343
什么是DOI,文献DOI怎么找? 2329238
邀请新用户注册赠送积分活动 1327077
关于科研通互助平台的介绍 1279355