生发中心
BCL6公司
心理压抑
生物
细胞生物学
免疫系统
B细胞
抑制因子
免疫学
转录因子
遗传学
基因
抗体
基因表达
作者
Chuanxin Huang,David G. Gonzalez,Christine M. Cote,Yanwen Jiang,Katerina Hatzi,Matt Teater,Kezhi Dai,Timothy Hla,Ann M. Haberman,Ari Melnick
出处
期刊:Cell Reports
[Cell Press]
日期:2014-08-28
卷期号:8 (5): 1497-1508
被引量:78
标识
DOI:10.1016/j.celrep.2014.07.059
摘要
To understand how the Bcl6 transcriptional repressor functions in the immune system, we disrupted its RD2 repression domain in mice. Bcl6RD2(MUT) mice exhibit a complete loss of germinal center (GC) formation but retain normal extrafollicular responses. Bcl6RD2(MUT) antigen-engaged B cells migrate to the interfollicular zone and interact with cognate T helper cells. However, these cells fail to complete early GC-commitment differentiation and coalesce as nascent GC aggregates. Bcl6 directly binds and represses trafficking receptors S1pr1 and Gpr183 by recruiting Hdac2 through the RD2 domain. Deregulation of these genes impairs B cell migration and may contribute to GC failure in Bcl6RD2(MUT) mice. The development of functional GC-TFH cells was partially impaired in Bcl6RD2(MUT) mice. In contrast to Bcl6(-/-) mice, Bcl6RD2(MUT) animals experience no inflammatory disease or macrophage deregulation. These results reveal an essential role for RD2 repression in early GC commitment and striking biochemical specificity in Bcl6 control of humoral and innate immune-cell phenotypes.
科研通智能强力驱动
Strongly Powered by AbleSci AI