生物
栽培
农学
耐旱性
回交
抗旱性
根系
基因
生物化学
作者
Yusaku Uga,Kazuhiko Sugimoto,Satoshi Ogawa,Jagadish Rane,Manabu Ishitani,Naho Hara,Yuka Kitomi,Yoshiaki Inukai,Kazuko Ono,Noriko Kanno,Haruhiko Inoue,Hinako Takehisa,Ritsuko Motoyama,Yoshiaki Nagamura,Jian Wu,Takashi Matsumoto,Toshiyuki Takai,Kazutoshi Okuno,Masahiro Yano
出处
期刊:Nature Genetics
[Springer Nature]
日期:2013-08-04
卷期号:45 (9): 1097-1102
被引量:1294
摘要
The genetic improvement of drought resistance is essential for stable and adequate crop production in drought-prone areas. Here we demonstrate that alteration of root system architecture improves drought avoidance through the cloning and characterization of DEEPER ROOTING 1 (DRO1), a rice quantitative trait locus controlling root growth angle. DRO1 is negatively regulated by auxin and is involved in cell elongation in the root tip that causes asymmetric root growth and downward bending of the root in response to gravity. Higher expression of DRO1 increases the root growth angle, whereby roots grow in a more downward direction. Introducing DRO1 into a shallow-rooting rice cultivar by backcrossing enabled the resulting line to avoid drought by increasing deep rooting, which maintained high yield performance under drought conditions relative to the recipient cultivar. Our experiments suggest that control of root system architecture will contribute to drought avoidance in crops.
科研通智能强力驱动
Strongly Powered by AbleSci AI