吸附
吸热过程
石墨烯
吸附
朗缪尔吸附模型
四环素
化学
氧化物
热力学
朗缪尔
动力学
反应速率常数
材料科学
物理化学
有机化学
纳米技术
物理
抗生素
生物化学
量子力学
作者
Ehsan Ezzatpour Ghadim,Firouzeh Manouchehri,Gholamreza Soleimani,Hadi Hosseini,Salimeh Kimiagar,Shohreh Nafisi
出处
期刊:PLOS ONE
[Public Library of Science]
日期:2013-11-26
卷期号:8 (11): e79254-e79254
被引量:170
标识
DOI:10.1371/journal.pone.0079254
摘要
Graphene oxide (GO) nanoparticle is a high potential effective absorbent. Tetracycline (TC) is a broad-spectrum antibiotic produced, indicated for use against many bacterial infections. In the present research, a systematic study of the adsorption and release process of tetracycline on GO was performed by varying pH, sorption time and temperature. The results of our studies showed that tetracycline strongly loads on the GO surface via π–π interaction and cation–π bonding. Investigation of TC adsorption kinetics showed that the equilibrium was reached within 15 min following the pseudo-second-order model with observed rate constants of k2 = 0.2742–0.5362 g/mg min (at different temperatures). The sorption data has interpreted by the Langmuir model with the maximum adsorption of 323 mg/g (298 K). The mean energy of adsorption was determined 1.83 kJ/mol (298 K) based on the Dubinin–Radushkevich (D–R) adsorption isotherm. Moreover, the thermodynamic parameters such as ΔH°, ΔS° and ΔG° values for the adsorption were estimated which indicated the endothermic and spontaneous nature of the sorption process. The electrochemistry approved an ideal reaction for the adsorption under electrodic process. Simulation of GO and TC was done by LAMMPS. Force studies in z direction showed that tetracycline comes close to GO sheet by C8 direction. Then it goes far and turns and again comes close from amine group to the GO sheet.
科研通智能强力驱动
Strongly Powered by AbleSci AI