分离乳清蛋白粉
水解
化学
酶水解
乳清蛋白
色谱法
变性(裂变材料)
粘度
酶
生物化学
核化学
材料科学
复合材料
作者
I.B. O’Loughlin,Brian A. Murray,Phil Kelly,Richard J. Fitzgerald,André Brodkorb
摘要
The effects of heat-induced denaturation and subsequent aggregation of whey protein isolate (WPI) solutions on the rate of enzymatic hydrolysis was investigated. Both heated (60 °C, 15 min; 65 °C, 5 and 15 min; 70 °C, 5 and 15 min, 75 °C, 5 and 15 min; 80 °C, 10 min) and unheated WPI solutions (100 g L–1 protein) were incubated with a commercial proteolytic enzyme preparation, Corolase PP, until they reached a target degree of hydrolysis (DH) of 5%. WPI solutions on heating were characterized by large aggregate formation, higher viscosity, and surface hydrophobicity and hydrolyzed more rapidly (P < 0.001) than the unheated. The whey proteins exhibited differences in their susceptibility to hydrolysis. Both viscosity and surface hydrophobicity along with insolubility declined as hydrolysis progressed. However, microstructural changes observed by light and confocal laser scanning microscopy (CLSM) provided insights to suggest that aggregate size and porosity may be complementary to denaturation in promoting faster enzymatic hydrolysis. This could be clearly observed in the course of aggregate disintegration, gel network breakdown, and improved solution clarification.
科研通智能强力驱动
Strongly Powered by AbleSci AI