Photochemical modeling of glyoxal at a rural site: observations and analysis from BEARPEX 2007

臭氧 大气化学 环境科学 微量气体 大气科学 对流层
作者
Andrew J. Huisman,J. Hottle,Melissa M. Galloway,Joshua P. DiGangi,Katherine L. Coens,Won-Sik Choi,I. C. Faloona,J. B. Gilman,W. C. Kuster,J. A. de Gouw,N. C. Bouvier-Brown,Allen H. Goldstein,B. W. LaFranchi,R. C. Cohen,G. M. Wolfe,Joel A. Thornton,Kenneth S. Docherty,Delphine K. Farmer,M. J. Cubison,José L. Jimenez,J. Mao,William H. Brune,Frank N. Keutsch
出处
期刊:Atmospheric Chemistry and Physics [Copernicus Publications]
卷期号:11 (17): 8883-8897 被引量:41
标识
DOI:10.5194/acp-11-8883-2011
摘要

Abstract. We present roughly one month of high time-resolution, direct, in situ measurements of gas-phase glyoxal acquired during the BEARPEX 2007 field campaign. The research site, located on a ponderosa pine plantation in the Sierra Nevada mountains, is strongly influenced by biogenic volatile organic compounds (BVOCs); thus this data adds to the few existing measurements of glyoxal in BVOC-dominated areas. The short lifetime of glyoxal of ~1 h, the fact that glyoxal mixing ratios are much higher during high temperature periods, and the results of a photochemical model demonstrate that glyoxal is strongly influenced by BVOC precursors during high temperature periods. A zero-dimensional box model using near-explicit chemistry from the Leeds Master Chemical Mechanism v3.1 was used to investigate the processes controlling glyoxal chemistry during BEARPEX 2007. The model showed that MBO is the most important glyoxal precursor (~67 %), followed by isoprene (~26 %) and methylchavicol (~6 %), a precursor previously not commonly considered for glyoxal production. The model calculated a noon lifetime for glyoxal of ~0.9 h, making glyoxal well suited as a local tracer of VOC oxidation in a forested rural environment; however, the modeled glyoxal mixing ratios over-predicted measured glyoxal by a factor 2 to 5. Loss of glyoxal to aerosol was not found to be significant, likely as a result of the very dry conditions, and could not explain the over-prediction. Although several parameters, such as an approximation for advection, were found to improve the model measurement discrepancy, reduction in OH was by far the most effective. Reducing model OH concentrations to half the measured values decreased the glyoxal over-prediction from a factor of 2.4 to 1.1, as well as the overprediction of HO2 from a factor of 1.64 to 1.14. Our analysis has shown that glyoxal is particularly sensitive to OH concentration compared to other BVOC oxidation products. This relationship arises from (i) the predominantly secondary- or higher-generation production of glyoxal from (mainly OH-driven, rather than O3-driven) BVOC oxidation at this site and (ii) the relative importance of photolysis in glyoxal loss as compared to reaction with OH. We propose that glyoxal is a useful tracer for OH-driven BVOC oxidation chemistry.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
长情藏今完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
彭于晏应助longer采纳,获得10
4秒前
4秒前
6秒前
6秒前
无奈又晴完成签到,获得积分10
6秒前
wzh完成签到,获得积分10
6秒前
7秒前
李健应助乐乐采纳,获得30
7秒前
晓宇发布了新的文献求助10
7秒前
沉静冰夏完成签到,获得积分10
7秒前
科研通AI6应助读书的时候采纳,获得10
8秒前
桐桐应助温柔发卡采纳,获得10
9秒前
Yuanyuan发布了新的文献求助10
9秒前
9秒前
11秒前
优美紫槐发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
因几完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助30
12秒前
12秒前
13秒前
深情安青应助manjusaka采纳,获得10
13秒前
14秒前
隐形曼青应助MANI采纳,获得10
14秒前
咸鱼发布了新的文献求助10
14秒前
15秒前
fy发布了新的文献求助10
15秒前
15秒前
缓慢的含海完成签到,获得积分10
16秒前
17秒前
采蘑菇发布了新的文献求助10
17秒前
17秒前
优美紫槐发布了新的文献求助10
17秒前
南风未起发布了新的文献求助10
18秒前
迷路荷花发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5720401
求助须知:如何正确求助?哪些是违规求助? 5260360
关于积分的说明 15291295
捐赠科研通 4869876
什么是DOI,文献DOI怎么找? 2615073
邀请新用户注册赠送积分活动 1565066
关于科研通互助平台的介绍 1522172