Effect of the damping function in dispersion corrected density functional theory

分子间力 分子内力 伦敦分散部队 水准点(测量) 统计物理学 航程(航空) 密度泛函理论 计算 物理 功能(生物学) 色散(光学) 量子力学 范德瓦尔斯力 数学 材料科学 分子 算法 地理 复合材料 生物 进化生物学 大地测量学
作者
Stefan Grimme,Stephan Ehrlich,Lars Goerigk
出处
期刊:Journal of Computational Chemistry [Wiley]
卷期号:32 (7): 1456-1465 被引量:20527
标识
DOI:10.1002/jcc.21759
摘要

It is shown by an extensive benchmark on molecular energy data that the mathematical form of the damping function in DFT-D methods has only a minor impact on the quality of the results. For 12 different functionals, a standard "zero-damping" formula and rational damping to finite values for small interatomic distances according to Becke and Johnson (BJ-damping) has been tested. The same (DFT-D3) scheme for the computation of the dispersion coefficients is used. The BJ-damping requires one fit parameter more for each functional (three instead of two) but has the advantage of avoiding repulsive interatomic forces at shorter distances. With BJ-damping better results for nonbonded distances and more clear effects of intramolecular dispersion in four representative molecular structures are found. For the noncovalently-bonded structures in the S22 set, both schemes lead to very similar intermolecular distances. For noncovalent interaction energies BJ-damping performs slightly better but both variants can be recommended in general. The exception to this is Hartree-Fock that can be recommended only in the BJ-variant and which is then close to the accuracy of corrected GGAs for non-covalent interactions. According to the thermodynamic benchmarks BJ-damping is more accurate especially for medium-range electron correlation problems and only small and practically insignificant double-counting effects are observed. It seems to provide a physically correct short-range behavior of correlation/dispersion even with unmodified standard functionals. In any case, the differences between the two methods are much smaller than the overall dispersion effect and often also smaller than the influence of the underlying density functional.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
HYLynn应助hetao286采纳,获得10
1秒前
3秒前
3秒前
夯大力发布了新的文献求助10
3秒前
3秒前
4秒前
自觉沛芹完成签到,获得积分10
4秒前
YukiXu完成签到 ,获得积分10
4秒前
4秒前
桐桐应助SXM采纳,获得10
5秒前
波特卡斯D艾斯完成签到 ,获得积分10
6秒前
852应助排骨炖豆角采纳,获得10
7秒前
7秒前
顾矜应助木子采纳,获得10
7秒前
feng发布了新的文献求助10
7秒前
成就的小熊猫完成签到,获得积分10
8秒前
8秒前
Morgenstern_ZH完成签到,获得积分10
9秒前
hua发布了新的文献求助10
9秒前
_Forelsket_完成签到,获得积分10
9秒前
9秒前
半颗橙子完成签到 ,获得积分10
11秒前
科研通AI5应助zmy采纳,获得10
11秒前
善学以致用应助enoot采纳,获得10
12秒前
JamesPei应助失眠的血茗采纳,获得10
12秒前
青山发布了新的文献求助10
12秒前
亻鱼发布了新的文献求助10
13秒前
脑洞疼应助成就的小熊猫采纳,获得10
13秒前
13秒前
waterclouds完成签到 ,获得积分10
13秒前
圆圈儿完成签到,获得积分10
13秒前
司空剑封完成签到,获得积分10
14秒前
14秒前
海棠yiyi完成签到,获得积分10
14秒前
14秒前
梁小鑫发布了新的文献求助10
14秒前
Jenny应助圈圈采纳,获得10
15秒前
内向青文完成签到,获得积分10
15秒前
lefora完成签到,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740