作者
Lei Yang,Tetsuya Sado,M. Vincent Hirt,Emmanuel Pasco-Viel,M. Arunachalam,Junbing Li,Xuzhen Wang,Jörg Freyhof,Kenji Saitoh,Andrew M. Simons,Masaki Miya,Shunping He,Richard L. Mayden
摘要
Cyprininae is the largest subfamily (>1300 species) of the family Cyprinidae and contains more polyploid species (∼400) than any other group of fishes. We examined the phylogenetic relationships of the Cyprininae based on extensive taxon, geographical, and genomic sampling of the taxa, using both mitochondrial and nuclear genes to address the phylogenetic challenges posed by polyploidy. Four datasets were analyzed in this study: two mitochondrial gene datasets (465 and 791 taxa, 5604bp), a mitogenome dataset (85 taxa, 14,771bp), and a cloned nuclear RAG1 dataset (97 taxa, 1497bp). Based on resulting trees, the subfamily Cyprininae was subdivided into 11 tribes: Probarbini (new; Probarbus+Catlocarpio), Labeonini Bleeker, 1859 (Labeo & allies), Torini Karaman, 1971 (Tor, Labeobarbus & allies), Smiliogastrini Bleeker, 1863 (Puntius, Enteromius & allies), Poropuntiini (Poropuntius & allies), Cyprinini Rafinesque, 1815 (Cyprinus & allies), Acrossocheilini (new; Acrossocheilus & allies), Spinibarbini (new; Spinibarbus), Schizothoracini McClelland, 1842 (Schizothorax & allies), Schizopygopsini Mirza, 1991 (Schizopygopsis & allies), and Barbini Bleeker, 1859 (Barbus & allies). Phylogenetic relationships within each tribe were discussed. Two or three distinct RAG1 lineages were identified for each of the following tribes Torini, Cyprinini, Spinibarbini, and Barbini, indicating their hybrid origin. The hexaploid African Labeobarbus & allies and Western Asian Capoeta are likely derived from two independent hybridization events between their respective maternal tetraploid ancestors and Cyprinion.