Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain

体素 统计参数映射 计算机科学 人工智能 神经影像学 集合(抽象数据类型) 神经科学 模式识别(心理学) 计算机视觉 磁共振成像 心理学 医学 放射科 程序设计语言 艺术 表演艺术 艺术史
作者
N. Tzourio-Mazoyer,Brigitte Landeau,Dimitri Papathanassiou,Fabrice Crivello,Olivier Etard,Nicolas Delcroix,Bernard Mazoyer,Marc Joliot
出处
期刊:NeuroImage [Elsevier]
卷期号:15 (1): 273-289 被引量:15433
标识
DOI:10.1006/nimg.2001.0978
摘要

An anatomical parcellation of the spatially normalized single-subject high-resolution T1 volume provided by the Montreal Neurological Institute (MNI) (D. L. Collins et al., 1998, Trans. Med. Imag. 17, 463-468) was performed. The MNI single-subject main sulci were first delineated and further used as landmarks for the 3D definition of 45 anatomical volumes of interest (AVOI) in each hemisphere. This procedure was performed using a dedicated software which allowed a 3D following of the sulci course on the edited brain. Regions of interest were then drawn manually with the same software every 2 mm on the axial slices of the high-resolution MNI single subject. The 90 AVOI were reconstructed and assigned a label. Using this parcellation method, three procedures to perform the automated anatomical labeling of functional studies are proposed: (1) labeling of an extremum defined by a set of coordinates, (2) percentage of voxels belonging to each of the AVOI intersected by a sphere centered by a set of coordinates, and (3) percentage of voxels belonging to each of the AVOI intersected by an activated cluster. An interface with the Statistical Parametric Mapping package (SPM, J. Ashburner and K. J. Friston, 1999, Hum. Brain Mapp. 7, 254-266) is provided as a freeware to researchers of the neuroimaging community. We believe that this tool is an improvement for the macroscopical labeling of activated area compared to labeling assessed using the Talairach atlas brain in which deformations are well known. However, this tool does not alleviate the need for more sophisticated labeling strategies based on anatomical or cytoarchitectonic probabilistic maps.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
珂珂发布了新的文献求助10
1秒前
1秒前
迟大猫应助我是站长才怪采纳,获得30
1秒前
2秒前
BaekHyun发布了新的文献求助10
2秒前
背后翠梅发布了新的文献求助30
2秒前
CCR发布了新的文献求助10
2秒前
su发布了新的文献求助10
4秒前
善学以致用应助钰c采纳,获得10
4秒前
Fundamental完成签到,获得积分20
5秒前
通~发布了新的文献求助10
5秒前
Akim应助阿屁屁猪采纳,获得10
5秒前
6秒前
细雨听风发布了新的文献求助10
6秒前
6秒前
英俊的小松鼠完成签到,获得积分10
6秒前
7秒前
9秒前
cc完成签到,获得积分20
9秒前
10秒前
10秒前
背后翠梅完成签到,获得积分10
10秒前
10秒前
涛涛发布了新的文献求助10
10秒前
lan完成签到,获得积分10
10秒前
皮皮完成签到 ,获得积分10
11秒前
ChiDaiOLD完成签到,获得积分10
11秒前
11秒前
情怀应助顺顺采纳,获得10
11秒前
Fundamental发布了新的文献求助10
13秒前
咩咩发布了新的文献求助10
13秒前
kingmin应助金鸡奖采纳,获得10
13秒前
喜悦蚂蚁完成签到,获得积分10
14秒前
赘婿应助拼搏向前采纳,获得10
14秒前
14秒前
14秒前
路十三完成签到 ,获得积分10
15秒前
Lucas应助Sophia采纳,获得10
16秒前
lan发布了新的文献求助10
16秒前
金容发布了新的文献求助10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808