Adhesion of spheres: The JKR-DMT transition using a dugdale model

材料科学 应变能释放率 强度因子 半径 机械 接触力学 复合材料 压力(语言学) 球体 流离失所(心理学) 粘附 断裂力学 物理 热力学 有限元法 天文 心理治疗师 哲学 语言学 计算机科学 计算机安全 心理学
作者
D. Maugis
出处
期刊:Journal of Colloid and Interface Science [Elsevier BV]
卷期号:150 (1): 243-269 被引量:1906
标识
DOI:10.1016/0021-9797(92)90285-t
摘要

In the Johnson-Kendall-Roberts (JKR) approximation, adhesion forces outside the area of contact are neglected and elastic stresses at the edge of the contact are infinite, as in linear elastic fracture mechanics. On the other hand, in the Derjaguin-Muller-Toporov (DMT) approximation, the adhesion forces are taken into account, but the profile is assumed to be Hertzian, as if adhesion forces Could not deform the surfaces. To avoid self consistent numerical calculations based on a specific interaction model (Lennard-Jones potential for example) we have used a Dugdale model, which allows analytical solutions. The adhesion forces are assumed to have a constant value σO, the theoretical stress, over a length d at the crack tip. This internal loading acting in the air gap (the external crack) leads to a stress intensity factor Km, which is cancelled with the stress intensity factor KI due to the external loading. This cancellation suppresses the stress singularities, ensures the continuity of stresses, and fixes the radius c and the crack opening displacement δt. The energy release rate G is computed by the J-integral and the equilibrium is given by G = w. The equilibrium curves a(P), a(δ), and P(σ), the adherence forces at fixed load or fixed grips, the profiles, and the stress distributions can therefore be drawn as a function of a single parameter λ. When λ increases from zero to infinity there is a continuous transition from the DMT approximation to the JKR approximation. Furthermore the value of G for the DMT approximation is derived. It is shown that it is not physically consistent to have tensile stresses in the area of contact and no adhesion forces outside or no tensile stresses in the area of contact and adhesion forces outside. In the JKR approximation the distribution of adhesion forces is reduced to a singular stress at r = a+. The total attraction force outside the contact being zero, the integral of stresses in the contact is equal to the applied load P and negative applied loads are supported by the elastic restoring forces. In the DMT approximation the adhesion stresses tend toward zero to have a continuity with the stress at r = a−, but their integral is finite and the total attraction force outside the contact is 2πwR. In the area of contact the distribution of stresses is Hertzian, and their integral is P + 27πwR. Negative applied loads are sustained by adhesion forces outside the contact.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
青珊发布了新的文献求助10
2秒前
宣宣宣0733完成签到,获得积分10
2秒前
俊逸吐司完成签到 ,获得积分10
3秒前
ttxxcdx完成签到 ,获得积分10
4秒前
胡质斌完成签到,获得积分10
4秒前
充电宝应助科研通管家采纳,获得10
7秒前
8秒前
姚怜南完成签到,获得积分10
10秒前
青珊完成签到,获得积分10
12秒前
自觉石头完成签到 ,获得积分10
13秒前
VVTTWW完成签到 ,获得积分10
15秒前
感性的寄真完成签到 ,获得积分10
17秒前
zhang完成签到,获得积分10
20秒前
23秒前
比比谁的速度快应助zhang采纳,获得50
27秒前
绿袖子完成签到,获得积分10
29秒前
36秒前
刘刘完成签到 ,获得积分10
37秒前
执着夏岚完成签到 ,获得积分10
37秒前
Xzx1995完成签到 ,获得积分10
41秒前
Hululu完成签到 ,获得积分10
43秒前
淡然的芷荷完成签到 ,获得积分10
44秒前
GT完成签到,获得积分10
46秒前
qiancib202完成签到,获得积分10
49秒前
量子星尘发布了新的文献求助10
50秒前
等待的幼晴完成签到,获得积分10
51秒前
负责灵萱完成签到 ,获得积分10
53秒前
幽默的忆霜完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
风光无限完成签到 ,获得积分20
1分钟前
庄海棠完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
沐风完成签到 ,获得积分10
1分钟前
含糊的茹妖完成签到 ,获得积分0
1分钟前
1分钟前
huangqian完成签到,获得积分10
1分钟前
沧海一粟完成签到 ,获得积分10
1分钟前
进击的巨人完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038029
求助须知:如何正确求助?哪些是违规求助? 3575740
关于积分的说明 11373751
捐赠科研通 3305559
什么是DOI,文献DOI怎么找? 1819224
邀请新用户注册赠送积分活动 892652
科研通“疑难数据库(出版商)”最低求助积分说明 815022