Adhesion of spheres: The JKR-DMT transition using a dugdale model

材料科学 应变能释放率 强度因子 半径 机械 接触力学 复合材料 压力(语言学) 球体 流离失所(心理学) 粘附 断裂力学 物理 热力学 有限元法 天文 心理治疗师 哲学 语言学 计算机科学 计算机安全 心理学
作者
D. Maugis
出处
期刊:Journal of Colloid and Interface Science [Elsevier BV]
卷期号:150 (1): 243-269 被引量:1906
标识
DOI:10.1016/0021-9797(92)90285-t
摘要

In the Johnson-Kendall-Roberts (JKR) approximation, adhesion forces outside the area of contact are neglected and elastic stresses at the edge of the contact are infinite, as in linear elastic fracture mechanics. On the other hand, in the Derjaguin-Muller-Toporov (DMT) approximation, the adhesion forces are taken into account, but the profile is assumed to be Hertzian, as if adhesion forces Could not deform the surfaces. To avoid self consistent numerical calculations based on a specific interaction model (Lennard-Jones potential for example) we have used a Dugdale model, which allows analytical solutions. The adhesion forces are assumed to have a constant value σO, the theoretical stress, over a length d at the crack tip. This internal loading acting in the air gap (the external crack) leads to a stress intensity factor Km, which is cancelled with the stress intensity factor KI due to the external loading. This cancellation suppresses the stress singularities, ensures the continuity of stresses, and fixes the radius c and the crack opening displacement δt. The energy release rate G is computed by the J-integral and the equilibrium is given by G = w. The equilibrium curves a(P), a(δ), and P(σ), the adherence forces at fixed load or fixed grips, the profiles, and the stress distributions can therefore be drawn as a function of a single parameter λ. When λ increases from zero to infinity there is a continuous transition from the DMT approximation to the JKR approximation. Furthermore the value of G for the DMT approximation is derived. It is shown that it is not physically consistent to have tensile stresses in the area of contact and no adhesion forces outside or no tensile stresses in the area of contact and adhesion forces outside. In the JKR approximation the distribution of adhesion forces is reduced to a singular stress at r = a+. The total attraction force outside the contact being zero, the integral of stresses in the contact is equal to the applied load P and negative applied loads are supported by the elastic restoring forces. In the DMT approximation the adhesion stresses tend toward zero to have a continuity with the stress at r = a−, but their integral is finite and the total attraction force outside the contact is 2πwR. In the area of contact the distribution of stresses is Hertzian, and their integral is P + 27πwR. Negative applied loads are sustained by adhesion forces outside the contact.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
哇哈哈哈发布了新的文献求助10
1秒前
1秒前
lyh2234完成签到 ,获得积分10
1秒前
2秒前
2秒前
bkagyin应助木易采纳,获得10
3秒前
4秒前
4秒前
4秒前
4秒前
4秒前
几两给几两的求助进行了留言
4秒前
lmt完成签到,获得积分10
5秒前
XL发布了新的文献求助10
5秒前
上官若男应助bear采纳,获得10
5秒前
6秒前
7秒前
yy完成签到,获得积分10
7秒前
9秒前
10秒前
11秒前
李白发布了新的文献求助10
11秒前
充电宝应助dc采纳,获得10
11秒前
量子星尘发布了新的文献求助10
12秒前
背后的傥发布了新的文献求助20
12秒前
优秀远侵完成签到,获得积分10
12秒前
充电宝应助何先生采纳,获得30
13秒前
幸运小怪兽完成签到,获得积分10
13秒前
foyefeng发布了新的文献求助10
13秒前
kevin发布了新的文献求助10
13秒前
Akim应助Zhao采纳,获得10
14秒前
侠客发布了新的文献求助10
14秒前
意外完成签到,获得积分10
15秒前
15秒前
15秒前
研友_VZG7GZ应助我不到啊采纳,获得10
15秒前
15秒前
传奇3应助糟糕的铁锤采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4867281
求助须知:如何正确求助?哪些是违规求助? 4159383
关于积分的说明 12897569
捐赠科研通 3913470
什么是DOI,文献DOI怎么找? 2149281
邀请新用户注册赠送积分活动 1167750
关于科研通互助平台的介绍 1070195