Adhesion of spheres: The JKR-DMT transition using a dugdale model

材料科学 应变能释放率 强度因子 半径 机械 接触力学 复合材料 压力(语言学) 球体 流离失所(心理学) 粘附 断裂力学 物理 热力学 有限元法 天文 心理治疗师 哲学 语言学 计算机科学 计算机安全 心理学
作者
D. Maugis
出处
期刊:Journal of Colloid and Interface Science [Elsevier BV]
卷期号:150 (1): 243-269 被引量:1906
标识
DOI:10.1016/0021-9797(92)90285-t
摘要

In the Johnson-Kendall-Roberts (JKR) approximation, adhesion forces outside the area of contact are neglected and elastic stresses at the edge of the contact are infinite, as in linear elastic fracture mechanics. On the other hand, in the Derjaguin-Muller-Toporov (DMT) approximation, the adhesion forces are taken into account, but the profile is assumed to be Hertzian, as if adhesion forces Could not deform the surfaces. To avoid self consistent numerical calculations based on a specific interaction model (Lennard-Jones potential for example) we have used a Dugdale model, which allows analytical solutions. The adhesion forces are assumed to have a constant value σO, the theoretical stress, over a length d at the crack tip. This internal loading acting in the air gap (the external crack) leads to a stress intensity factor Km, which is cancelled with the stress intensity factor KI due to the external loading. This cancellation suppresses the stress singularities, ensures the continuity of stresses, and fixes the radius c and the crack opening displacement δt. The energy release rate G is computed by the J-integral and the equilibrium is given by G = w. The equilibrium curves a(P), a(δ), and P(σ), the adherence forces at fixed load or fixed grips, the profiles, and the stress distributions can therefore be drawn as a function of a single parameter λ. When λ increases from zero to infinity there is a continuous transition from the DMT approximation to the JKR approximation. Furthermore the value of G for the DMT approximation is derived. It is shown that it is not physically consistent to have tensile stresses in the area of contact and no adhesion forces outside or no tensile stresses in the area of contact and adhesion forces outside. In the JKR approximation the distribution of adhesion forces is reduced to a singular stress at r = a+. The total attraction force outside the contact being zero, the integral of stresses in the contact is equal to the applied load P and negative applied loads are supported by the elastic restoring forces. In the DMT approximation the adhesion stresses tend toward zero to have a continuity with the stress at r = a−, but their integral is finite and the total attraction force outside the contact is 2πwR. In the area of contact the distribution of stresses is Hertzian, and their integral is P + 27πwR. Negative applied loads are sustained by adhesion forces outside the contact.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
xiaoxia完成签到,获得积分10
1秒前
小马甲应助Kair采纳,获得10
1秒前
Janson发布了新的文献求助10
1秒前
飞翔的荷兰人完成签到,获得积分10
2秒前
潇洒冰蓝发布了新的文献求助10
2秒前
2秒前
4秒前
科研开门应助75986686采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
卡卡荧光橙完成签到,获得积分10
6秒前
RYAN发布了新的文献求助30
6秒前
8秒前
通通完成签到,获得积分10
9秒前
9秒前
10秒前
Jasper应助bitahu采纳,获得10
10秒前
book发布了新的文献求助10
10秒前
fish完成签到,获得积分10
10秒前
shiyi应助苗条辣条采纳,获得10
11秒前
dwj发布了新的文献求助10
11秒前
jogrgr发布了新的文献求助10
13秒前
Holly12345应助榆术山支子采纳,获得10
14秒前
石会发发布了新的文献求助10
14秒前
迷人芙蓉发布了新的文献求助10
14秒前
潇洒冰蓝完成签到,获得积分10
14秒前
16秒前
tsntn完成签到,获得积分10
17秒前
知性的幻巧完成签到,获得积分10
17秒前
17秒前
橘子发布了新的文献求助20
18秒前
Eunhyo发布了新的文献求助10
18秒前
没有昵称发布了新的文献求助10
19秒前
李爱国应助sci一区采纳,获得10
20秒前
Jasper应助香蕉外套采纳,获得10
20秒前
21秒前
明理的霸发布了新的文献求助10
23秒前
23秒前
RYAN完成签到,获得积分10
23秒前
24秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975339
求助须知:如何正确求助?哪些是违规求助? 3519670
关于积分的说明 11199199
捐赠科研通 3256002
什么是DOI,文献DOI怎么找? 1798043
邀请新用户注册赠送积分活动 877386
科研通“疑难数据库(出版商)”最低求助积分说明 806305