Adhesion of spheres: The JKR-DMT transition using a dugdale model

材料科学 应变能释放率 强度因子 半径 机械 接触力学 复合材料 压力(语言学) 球体 流离失所(心理学) 粘附 断裂力学 物理 热力学 有限元法 天文 心理治疗师 哲学 语言学 计算机科学 计算机安全 心理学
作者
D. Maugis
出处
期刊:Journal of Colloid and Interface Science [Elsevier]
卷期号:150 (1): 243-269 被引量:1876
标识
DOI:10.1016/0021-9797(92)90285-t
摘要

In the Johnson-Kendall-Roberts (JKR) approximation, adhesion forces outside the area of contact are neglected and elastic stresses at the edge of the contact are infinite, as in linear elastic fracture mechanics. On the other hand, in the Derjaguin-Muller-Toporov (DMT) approximation, the adhesion forces are taken into account, but the profile is assumed to be Hertzian, as if adhesion forces Could not deform the surfaces. To avoid self consistent numerical calculations based on a specific interaction model (Lennard-Jones potential for example) we have used a Dugdale model, which allows analytical solutions. The adhesion forces are assumed to have a constant value σO, the theoretical stress, over a length d at the crack tip. This internal loading acting in the air gap (the external crack) leads to a stress intensity factor Km, which is cancelled with the stress intensity factor KI due to the external loading. This cancellation suppresses the stress singularities, ensures the continuity of stresses, and fixes the radius c and the crack opening displacement δt. The energy release rate G is computed by the J-integral and the equilibrium is given by G = w. The equilibrium curves a(P), a(δ), and P(σ), the adherence forces at fixed load or fixed grips, the profiles, and the stress distributions can therefore be drawn as a function of a single parameter λ. When λ increases from zero to infinity there is a continuous transition from the DMT approximation to the JKR approximation. Furthermore the value of G for the DMT approximation is derived. It is shown that it is not physically consistent to have tensile stresses in the area of contact and no adhesion forces outside or no tensile stresses in the area of contact and adhesion forces outside. In the JKR approximation the distribution of adhesion forces is reduced to a singular stress at r = a+. The total attraction force outside the contact being zero, the integral of stresses in the contact is equal to the applied load P and negative applied loads are supported by the elastic restoring forces. In the DMT approximation the adhesion stresses tend toward zero to have a continuity with the stress at r = a−, but their integral is finite and the total attraction force outside the contact is 2πwR. In the area of contact the distribution of stresses is Hertzian, and their integral is P + 27πwR. Negative applied loads are sustained by adhesion forces outside the contact.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
min完成签到 ,获得积分10
2秒前
Ting222发布了新的文献求助10
3秒前
July完成签到,获得积分10
3秒前
星星发布了新的文献求助10
3秒前
达瓦里氏完成签到,获得积分10
3秒前
6秒前
科研通AI2S应助北林采纳,获得10
6秒前
李大白完成签到 ,获得积分10
6秒前
7秒前
mint-WANG完成签到,获得积分10
8秒前
俭朴的乌冬面关注了科研通微信公众号
9秒前
11秒前
11秒前
Kai完成签到,获得积分10
12秒前
哈哈哈发布了新的文献求助10
12秒前
12秒前
13秒前
LCG20010909完成签到,获得积分10
14秒前
tang完成签到,获得积分10
14秒前
隐形曼青应助卓卓采纳,获得30
15秒前
姜姜发布了新的文献求助10
15秒前
烟花应助单薄天亦采纳,获得30
16秒前
小洋发布了新的文献求助10
16秒前
tang发布了新的文献求助10
17秒前
wenying发布了新的文献求助10
18秒前
20秒前
lslfreedom完成签到,获得积分10
20秒前
21秒前
大模型应助陈述采纳,获得10
21秒前
jovi完成签到,获得积分20
22秒前
23秒前
23秒前
23秒前
23秒前
Hoo应助刘大大采纳,获得10
23秒前
hanyy完成签到,获得积分10
24秒前
彩色的云发布了新的文献求助10
24秒前
老板娘完成签到,获得积分10
24秒前
小蘑菇应助吕广德采纳,获得10
25秒前
下水道发布了新的文献求助10
26秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
Advanced Issues in Partial Least Squares Structural Equation Modeling (Second Edition) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143890
求助须知:如何正确求助?哪些是违规求助? 2795451
关于积分的说明 7815296
捐赠科研通 2451527
什么是DOI,文献DOI怎么找? 1304498
科研通“疑难数据库(出版商)”最低求助积分说明 627251
版权声明 601419