结核分枝杆菌
体内
肺结核
结核病疫苗
离体
药品
菌落形成单位
医学
抗药性
疫苗效力
微生物学
免疫学
病毒学
药理学
生物
接种疫苗
细菌
病理
生物技术
遗传学
作者
Tianyu Zhang,Si Yang Li,Eric L. Nuermberger
出处
期刊:PLOS ONE
[Public Library of Science]
日期:2012-01-11
卷期号:7 (1): e29774-e29774
被引量:66
标识
DOI:10.1371/journal.pone.0029774
摘要
Preclinical efforts to discover and develop new drugs and vaccines for tuberculosis are hampered by the reliance on colony-forming unit (CFU) counts as primary outcomes for in vivo efficacy studies and the slow growth of Mycobacterium tuberculosis. The utility of bioluminescent M. tuberculosis reporter strains for real-time in vitro and ex vivo assessment of drug and vaccine activity has been demonstrated but a simple, non-invasive, real-time surrogate marker to replace CFU counts for real-time evaluation of drug and vaccine efficacy in vivo has not been described. We describe the development of a fully virulent and stable autoluminescent strain of M. tuberculosis and proof-of-concept experiments demonstrating its utility for in vivo bioluminescence imaging to assess the efficacy of new drugs and vaccines for tuberculosis in a mouse model. Relative light unit (RLU) counts paralleled CFU counts during the active phase of bacterial growth, with a lower limit of detection of approximately 10(6) CFU in live, anesthetized mice. Experiments distinguishing active from inactive anti-tuberculosis drugs and bacteriostatic drug effects from bactericidal effects were completed in less than 5 days. The ability of a recombinant BCG vaccine to limit bacterial growth was demonstrated within 3 weeks. Use of this autoluminescent reporter strain has the potential to drastically reduce the time, effort, animals and costs consumed in the evaluation of drug activity in vitro and the in vivo assessment of drug and vaccine efficacy.
科研通智能强力驱动
Strongly Powered by AbleSci AI