重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Information geometry of target tracking sensor networks

信息几何学 测地线 计算机科学 微分几何 费希尔信息 信息论 无线传感器网络 黎曼几何 欧几里得空间 曲率 人工智能 数学 几何学 标量曲率 数学分析 机器学习 计算机网络 统计
作者
Yongqiang Cheng,Xuezhi Wang,Mark R. Morelande,Bill Moran
出处
期刊:Information Fusion [Elsevier]
卷期号:14 (3): 311-326 被引量:62
标识
DOI:10.1016/j.inffus.2012.02.005
摘要

In this paper, the connections between information geometry and performance of sensor networks for target tracking are explored to pursue a better understanding of placement, planning and scheduling issues. Firstly, the integrated Fisher information distance (IFID) between the states of two targets is analyzed by solving the geodesic equations and is adopted as a measure of target resolvability by the sensor. The differences between the IFID and the well known Kullback–Leibler divergence (KLD) are highlighted. We also explain how the energy functional, which is the “integrated, differential” KLD, relates to the other distance measures. Secondly, the structures of statistical manifolds are elucidated by computing the canonical Levi–Civita affine connection as well as Riemannian and scalar curvatures. We show the relationship between the Ricci curvature tensor field and the amount of information that can be obtained by the network sensors. Finally, an analytical presentation of statistical manifolds as an immersion in the Euclidean space for distributions of exponential type is given. The significance and potential to address system definition and planning issues using information geometry, such as the sensing capability to distinguish closely spaced targets, calculation of the amount of information collected by sensors and the problem of optimal scheduling of network sensor and resources, etc., are demonstrated. The proposed analysis techniques are presented via three basic sensor network scenarios: a simple range-bearing radar, two bearings-only passive sonars, and three ranges-only detectors, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高速公鹿完成签到 ,获得积分10
1秒前
1秒前
清欢完成签到,获得积分10
1秒前
2秒前
wss发布了新的文献求助10
2秒前
2秒前
友好的千凡完成签到,获得积分10
2秒前
5秒前
风趣的瑛完成签到 ,获得积分10
5秒前
啦啦啦发布了新的文献求助10
6秒前
北过完成签到,获得积分10
6秒前
积极的玉米完成签到,获得积分20
6秒前
6秒前
6秒前
852应助挡住所有坏运气888采纳,获得10
7秒前
8秒前
9秒前
9秒前
YJ888完成签到,获得积分10
9秒前
越越关注了科研通微信公众号
9秒前
9秒前
英姑应助知性的雪糕采纳,获得10
10秒前
11秒前
李飘飘发布了新的文献求助10
11秒前
12秒前
hang发布了新的文献求助10
12秒前
sq0507发布了新的文献求助10
12秒前
12秒前
14秒前
14秒前
杨利英发布了新的文献求助10
15秒前
YUN完成签到,获得积分10
15秒前
等待的寒松关注了科研通微信公众号
16秒前
16秒前
tian发布了新的文献求助10
17秒前
etrh完成签到 ,获得积分10
18秒前
斯文败类应助方可采纳,获得10
20秒前
月亮完成签到,获得积分10
20秒前
郭郭发布了新的文献求助30
21秒前
找文献呢发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468225
求助须知:如何正确求助?哪些是违规求助? 4571705
关于积分的说明 14331270
捐赠科研通 4498225
什么是DOI,文献DOI怎么找? 2464411
邀请新用户注册赠送积分活动 1453131
关于科研通互助平台的介绍 1427777