亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Information geometry of target tracking sensor networks

信息几何学 测地线 计算机科学 微分几何 费希尔信息 信息论 无线传感器网络 黎曼几何 欧几里得空间 曲率 人工智能 数学 几何学 标量曲率 数学分析 机器学习 计算机网络 统计
作者
Yongqiang Cheng,Xuezhi Wang,Mark R. Morelande,Bill Moran
出处
期刊:Information Fusion [Elsevier]
卷期号:14 (3): 311-326 被引量:62
标识
DOI:10.1016/j.inffus.2012.02.005
摘要

In this paper, the connections between information geometry and performance of sensor networks for target tracking are explored to pursue a better understanding of placement, planning and scheduling issues. Firstly, the integrated Fisher information distance (IFID) between the states of two targets is analyzed by solving the geodesic equations and is adopted as a measure of target resolvability by the sensor. The differences between the IFID and the well known Kullback–Leibler divergence (KLD) are highlighted. We also explain how the energy functional, which is the “integrated, differential” KLD, relates to the other distance measures. Secondly, the structures of statistical manifolds are elucidated by computing the canonical Levi–Civita affine connection as well as Riemannian and scalar curvatures. We show the relationship between the Ricci curvature tensor field and the amount of information that can be obtained by the network sensors. Finally, an analytical presentation of statistical manifolds as an immersion in the Euclidean space for distributions of exponential type is given. The significance and potential to address system definition and planning issues using information geometry, such as the sensing capability to distinguish closely spaced targets, calculation of the amount of information collected by sensors and the problem of optimal scheduling of network sensor and resources, etc., are demonstrated. The proposed analysis techniques are presented via three basic sensor network scenarios: a simple range-bearing radar, two bearings-only passive sonars, and three ranges-only detectors, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
18秒前
karstbing发布了新的文献求助10
24秒前
cy0824完成签到 ,获得积分10
25秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
搜集达人应助科研通管家采纳,获得10
1分钟前
Achuia完成签到,获得积分10
2分钟前
2分钟前
程若男完成签到,获得积分10
3分钟前
小唐完成签到,获得积分10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
汉堡包应助Fairy采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
Akim应助lngenuo采纳,获得30
4分钟前
4分钟前
4分钟前
4分钟前
Wei发布了新的文献求助10
4分钟前
4分钟前
Fairy发布了新的文献求助10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
5分钟前
hb完成签到,获得积分10
5分钟前
紫熊完成签到,获得积分10
6分钟前
啸西风完成签到,获得积分10
6分钟前
孙严青完成签到,获得积分10
6分钟前
Criminology34应助科研通管家采纳,获得10
7分钟前
科研通AI6应助科研通管家采纳,获得10
7分钟前
wanci应助野性的少司缘采纳,获得10
7分钟前
7分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5714938
求助须知:如何正确求助?哪些是违规求助? 5228707
关于积分的说明 15273909
捐赠科研通 4866079
什么是DOI,文献DOI怎么找? 2612676
邀请新用户注册赠送积分活动 1562848
关于科研通互助平台的介绍 1520139