Information geometry of target tracking sensor networks

信息几何学 测地线 计算机科学 微分几何 费希尔信息 信息论 无线传感器网络 黎曼几何 欧几里得空间 曲率 人工智能 数学 几何学 标量曲率 数学分析 机器学习 统计 计算机网络
作者
Yongqiang Cheng,Xuezhi Wang,Mark R. Morelande,Bill Moran
出处
期刊:Information Fusion [Elsevier BV]
卷期号:14 (3): 311-326 被引量:62
标识
DOI:10.1016/j.inffus.2012.02.005
摘要

In this paper, the connections between information geometry and performance of sensor networks for target tracking are explored to pursue a better understanding of placement, planning and scheduling issues. Firstly, the integrated Fisher information distance (IFID) between the states of two targets is analyzed by solving the geodesic equations and is adopted as a measure of target resolvability by the sensor. The differences between the IFID and the well known Kullback–Leibler divergence (KLD) are highlighted. We also explain how the energy functional, which is the “integrated, differential” KLD, relates to the other distance measures. Secondly, the structures of statistical manifolds are elucidated by computing the canonical Levi–Civita affine connection as well as Riemannian and scalar curvatures. We show the relationship between the Ricci curvature tensor field and the amount of information that can be obtained by the network sensors. Finally, an analytical presentation of statistical manifolds as an immersion in the Euclidean space for distributions of exponential type is given. The significance and potential to address system definition and planning issues using information geometry, such as the sensing capability to distinguish closely spaced targets, calculation of the amount of information collected by sensors and the problem of optimal scheduling of network sensor and resources, etc., are demonstrated. The proposed analysis techniques are presented via three basic sensor network scenarios: a simple range-bearing radar, two bearings-only passive sonars, and three ranges-only detectors, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
li完成签到,获得积分10
2秒前
3秒前
独特的友琴完成签到 ,获得积分10
3秒前
无花果应助知性的采珊采纳,获得150
3秒前
共享精神应助Youth采纳,获得10
3秒前
量子星尘发布了新的文献求助10
7秒前
pzhzy123完成签到,获得积分20
7秒前
闫伊森完成签到,获得积分10
10秒前
12秒前
上官若男应助祁尒采纳,获得10
14秒前
16秒前
18秒前
能干觅夏完成签到 ,获得积分10
20秒前
春风发布了新的文献求助10
21秒前
ssx发布了新的文献求助10
24秒前
任老三发布了新的文献求助10
25秒前
77发布了新的文献求助10
25秒前
激昂的野猪骑士完成签到,获得积分10
26秒前
春风完成签到,获得积分10
29秒前
Lucas应助ssx采纳,获得30
32秒前
fanmo完成签到 ,获得积分0
32秒前
任老三完成签到,获得积分10
34秒前
34秒前
37秒前
任善若完成签到 ,获得积分10
38秒前
Jasper应助Liudi采纳,获得10
41秒前
43秒前
阳光凡儿发布了新的文献求助20
44秒前
现代的访曼应助Dky采纳,获得20
47秒前
77完成签到,获得积分20
48秒前
陶醉白柏发布了新的文献求助10
49秒前
科研通AI2S应助hhchhcmxhf采纳,获得10
50秒前
科研通AI2S应助巫马尔槐采纳,获得10
50秒前
50秒前
dyy完成签到 ,获得积分10
50秒前
50秒前
51秒前
omoily发布了新的文献求助10
54秒前
萧水白发布了新的文献求助100
55秒前
瑞曦完成签到,获得积分10
56秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956715
求助须知:如何正确求助?哪些是违规求助? 3502823
关于积分的说明 11110282
捐赠科研通 3233774
什么是DOI,文献DOI怎么找? 1787498
邀请新用户注册赠送积分活动 870685
科研通“疑难数据库(出版商)”最低求助积分说明 802172