Information geometry of target tracking sensor networks

信息几何学 测地线 计算机科学 微分几何 费希尔信息 信息论 无线传感器网络 黎曼几何 欧几里得空间 曲率 人工智能 数学 几何学 标量曲率 数学分析 机器学习 计算机网络 统计
作者
Yongqiang Cheng,Xuezhi Wang,Mark R. Morelande,Bill Moran
出处
期刊:Information Fusion [Elsevier]
卷期号:14 (3): 311-326 被引量:62
标识
DOI:10.1016/j.inffus.2012.02.005
摘要

In this paper, the connections between information geometry and performance of sensor networks for target tracking are explored to pursue a better understanding of placement, planning and scheduling issues. Firstly, the integrated Fisher information distance (IFID) between the states of two targets is analyzed by solving the geodesic equations and is adopted as a measure of target resolvability by the sensor. The differences between the IFID and the well known Kullback–Leibler divergence (KLD) are highlighted. We also explain how the energy functional, which is the “integrated, differential” KLD, relates to the other distance measures. Secondly, the structures of statistical manifolds are elucidated by computing the canonical Levi–Civita affine connection as well as Riemannian and scalar curvatures. We show the relationship between the Ricci curvature tensor field and the amount of information that can be obtained by the network sensors. Finally, an analytical presentation of statistical manifolds as an immersion in the Euclidean space for distributions of exponential type is given. The significance and potential to address system definition and planning issues using information geometry, such as the sensing capability to distinguish closely spaced targets, calculation of the amount of information collected by sensors and the problem of optimal scheduling of network sensor and resources, etc., are demonstrated. The proposed analysis techniques are presented via three basic sensor network scenarios: a simple range-bearing radar, two bearings-only passive sonars, and three ranges-only detectors, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
RC_Wang应助科研通管家采纳,获得10
刚刚
研友_VZG7GZ应助科研通管家采纳,获得10
刚刚
充电宝应助科研通管家采纳,获得10
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
大个应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
匹诺曹发布了新的文献求助10
1秒前
唐画完成签到 ,获得积分10
1秒前
1秒前
1秒前
淡淡采白关注了科研通微信公众号
2秒前
tY完成签到,获得积分20
2秒前
傲娇的凡旋应助卢健辉采纳,获得10
3秒前
CodeCraft应助calbee采纳,获得10
3秒前
5秒前
5秒前
sw98318完成签到,获得积分10
6秒前
impala完成签到,获得积分10
6秒前
6秒前
欣喜访旋发布了新的文献求助10
6秒前
朱江涛完成签到 ,获得积分10
7秒前
角鸮完成签到,获得积分10
7秒前
zly完成签到 ,获得积分10
8秒前
雨霧雲完成签到,获得积分10
8秒前
qnqqq完成签到 ,获得积分10
9秒前
健壮的涑发布了新的文献求助10
9秒前
10秒前
10秒前
秋山伊夫完成签到,获得积分10
10秒前
入门的橙橙完成签到 ,获得积分10
10秒前
BONBON发布了新的文献求助10
11秒前
13秒前
TOM完成签到,获得积分10
13秒前
隐形曼青应助欣喜访旋采纳,获得10
14秒前
852应助Millie采纳,获得10
14秒前
龍Ryu完成签到,获得积分10
15秒前
内向凌兰发布了新的文献求助10
16秒前
伍秋望完成签到,获得积分10
16秒前
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808