Information geometry of target tracking sensor networks

信息几何学 测地线 计算机科学 微分几何 费希尔信息 信息论 无线传感器网络 黎曼几何 欧几里得空间 曲率 人工智能 数学 几何学 标量曲率 数学分析 机器学习 统计 计算机网络
作者
Yongqiang Cheng,Xuezhi Wang,Mark R. Morelande,Bill Moran
出处
期刊:Information Fusion [Elsevier]
卷期号:14 (3): 311-326 被引量:62
标识
DOI:10.1016/j.inffus.2012.02.005
摘要

In this paper, the connections between information geometry and performance of sensor networks for target tracking are explored to pursue a better understanding of placement, planning and scheduling issues. Firstly, the integrated Fisher information distance (IFID) between the states of two targets is analyzed by solving the geodesic equations and is adopted as a measure of target resolvability by the sensor. The differences between the IFID and the well known Kullback–Leibler divergence (KLD) are highlighted. We also explain how the energy functional, which is the “integrated, differential” KLD, relates to the other distance measures. Secondly, the structures of statistical manifolds are elucidated by computing the canonical Levi–Civita affine connection as well as Riemannian and scalar curvatures. We show the relationship between the Ricci curvature tensor field and the amount of information that can be obtained by the network sensors. Finally, an analytical presentation of statistical manifolds as an immersion in the Euclidean space for distributions of exponential type is given. The significance and potential to address system definition and planning issues using information geometry, such as the sensing capability to distinguish closely spaced targets, calculation of the amount of information collected by sensors and the problem of optimal scheduling of network sensor and resources, etc., are demonstrated. The proposed analysis techniques are presented via three basic sensor network scenarios: a simple range-bearing radar, two bearings-only passive sonars, and three ranges-only detectors, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助咖啡酸醋冰采纳,获得10
2秒前
热心市民小红花应助相识采纳,获得10
2秒前
2秒前
随风旅鼠完成签到,获得积分20
4秒前
SJ完成签到,获得积分10
4秒前
4秒前
两个轮完成签到,获得积分10
7秒前
7秒前
~Dreamboat发布了新的文献求助10
9秒前
成就的雪莲完成签到,获得积分10
10秒前
斯文千亦完成签到,获得积分10
11秒前
人小鸭儿大完成签到 ,获得积分10
11秒前
斯文败类应助胡八一采纳,获得10
12秒前
烟花应助小晴天采纳,获得10
12秒前
Sango完成签到,获得积分20
15秒前
坚强枫发布了新的文献求助10
15秒前
19秒前
ONLY发布了新的文献求助100
19秒前
20秒前
奋斗尔安应助Glamour_Joy采纳,获得10
22秒前
CHENXIN532完成签到,获得积分10
23秒前
顾矜应助随风旅鼠采纳,获得10
23秒前
24秒前
26秒前
boniu发布了新的文献求助10
26秒前
27秒前
相识发布了新的文献求助10
28秒前
zyw发布了新的文献求助10
29秒前
大模型应助外向的烨霖采纳,获得10
29秒前
hbj完成签到,获得积分10
31秒前
桀桀完成签到 ,获得积分10
31秒前
Ya发布了新的文献求助10
34秒前
acffo完成签到 ,获得积分10
36秒前
醉熏的如雪完成签到,获得积分10
36秒前
KK完成签到 ,获得积分20
37秒前
爱静静应助淡然归尘采纳,获得10
37秒前
李健的小迷弟应助Gstar采纳,获得10
38秒前
38秒前
所所应助xh采纳,获得10
39秒前
灵巧的之瑶完成签到,获得积分10
40秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3264309
求助须知:如何正确求助?哪些是违规求助? 2904427
关于积分的说明 8330215
捐赠科研通 2574641
什么是DOI,文献DOI怎么找? 1399322
科研通“疑难数据库(出版商)”最低求助积分说明 654476
邀请新用户注册赠送积分活动 633167