摘要
Starch - StärkeVolume 57, Issue 10 p. 494-504 Research PaperFull Access The Effects of Citric Acid on the Properties of Thermoplastic Starch Plasticized by Glycerol Yu Jiugao, Yu Jiugao School of Science, Tianjin University, Tianjin, ChinaSearch for more papers by this authorWang Ning, Wang Ning School of Science, Tianjin University, Tianjin, ChinaSearch for more papers by this authorMa Xiaofei, Corresponding Author Ma Xiaofei [email protected] School of Science, Tianjin University, Tianjin, ChinaSchool of Science, Tianjin University, Tianjin 300072, China, Phone: +86-022-27401644, Fax: +86-022-27403475Search for more papers by this author Yu Jiugao, Yu Jiugao School of Science, Tianjin University, Tianjin, ChinaSearch for more papers by this authorWang Ning, Wang Ning School of Science, Tianjin University, Tianjin, ChinaSearch for more papers by this authorMa Xiaofei, Corresponding Author Ma Xiaofei [email protected] School of Science, Tianjin University, Tianjin, ChinaSchool of Science, Tianjin University, Tianjin 300072, China, Phone: +86-022-27401644, Fax: +86-022-27403475Search for more papers by this author First published: 30 September 2005 https://doi.org/10.1002/star.200500423Citations: 195AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract The effects of citric acid on the properties of glycerol-plasticized thermoplastic starch (GPTPS) were studied. In the presence of citric acid and glycerol, native cornstarch granules are transferred to a continuous phase as shown by scanning electron microscopy (SEM). As shown by thermogravimetric analysis (TGA), the improvement in thermal stability confirms that the adhesion between citric acid, glycerol, water and starch in TPS was enhanced with the addition of citric acid. It was proven by Fourier transform infrared (FTIR) spectroscopy that citric acid can form stronger hydrogen-bond interactions with starch than glycerol. Both FTIR spectroscopy and X-ray diffractometry of citric acid-modified GPTPS (CATPS) revealed that citric acid can effectively inhibit starch re-crystallization (i.e. retrogradation), because of the strong hydrogen-bond interaction between citric acid and starch. Rheology studies revealed that citric acid can obviously decrease the shear viscosity and improve the fluidity of TPS. Citric acid can also improve the elongation of GPTPS and ameliorate the water resistance of GPTPS at high relative humidities, but decreased the tensile stress. References 1 K. Petersen, N. P. Væggemose, G. Bertelsen, et al.: Potential of biobased materials for food packaging. Trends Food Sci. Technol. 1999, 10, 52–68. 10.1016/S0924-2244(99)00019-9 CASWeb of Science®Google Scholar 2 J. J. G. van Soest, N. Knooren: Influence of glycerol and water content on the structure and properties of extruded starch plastic sheets during aging. J. Appl. Polym. Sci. 1997, 64 (7), 1411–1422. 10.1002/(SICI)1097-4628(19970516)64:7<1411::AID-APP21>3.0.CO;2-Y CASWeb of Science®Google Scholar 3 O. Martin, L. Averous, G. Della Valle: In-line determination of plasticized wheat starch viscoelastic behavior: impact of processing. Carbohydr. Polym. 2003, 53 (2), 169–182. 10.1016/S0144-8617(03)00040-7 CASWeb of Science®Google Scholar 4 A. A. S. Curvelo, A. J. F. De Carvalho, J. A. M. Agnelli, Thermoplastic starch–cellulosic fibers composites: preliminary results. Carbohydr. Polym. 2001, 45, 183–188. 10.1016/S0144-8617(00)00314-3 CASWeb of Science®Google Scholar 5 M. L. Fishman, D. R. Coffin, R. P. Konstance, C. I. Onwulata: Extrusion of pectin/starch blends plasticized with glycerol. Carbohydr. Polym. 2000, 41, 317–325. 10.1016/S0144-8617(99)00117-4 CASWeb of Science®Google Scholar 6 O. Martin, E. Schwach, L. Averous, Y. Couturier: Properties of biodegradable multilayer films based on plasticized wheat starch. Starch/Stärke 2001, 53 (8), 372–380. 10.1002/1521-379X(200108)53:8<372::AID-STAR372>3.0.CO;2-F CASWeb of Science®Google Scholar 7 J. Yu, J. Gao, T. Lin: Biodegradable thermoplastic starch. J. Polym. Sci. 1996, 62, 1491–1494. 10.1002/(SICI)1097-4628(19961128)62:9<1491::AID-APP19>3.0.CO;2-1 CASWeb of Science®Google Scholar 8 A. L. M. Smits, M. Wübbenhorst, P. H. Kruiskamp, J. J. G. van Soest, J. F. G. Vliegenthart, J. van Turnhout: Structure evolution in amylopectin/ethylene glycol mixtures by H-bond formation and phase separation studied with dielectric relaxation spectroscopy. J. Phys. Chem. B 2001, 105 (24), 5630–5636. 10.1021/jp003289f CASWeb of Science®Google Scholar 9 L. Wang, R. L. Shogren, C. Carriere: Preparation and properties of thermoplastic starch-polyester laminate sheets by coextrusion. Polym. Eng. Sci. 2000, 40, 499–506. 10.1002/pen.11182 CASWeb of Science®Google Scholar 10 A. Barret, G. Kaletunc, S. Rosenburg, K. Breslauer: Effect of sucrose on the structure, mechanical strength and thermal properties of corn extrudates. Carbohydr. Polym. 1995, 26, 261–269. 10.1016/0144-8617(95)00024-2 Web of Science®Google Scholar 11 X. F. MA, J. Yu: The effects of plasticizers containing amide groups on the properties of thermoplastic starch. Starch/Stärke 2004, 56 (11), 545–551. 10.1002/star.200300256 CASWeb of Science®Google Scholar 12 X. F. MA, J. Yu, Formamide as the plasticizer for thermoplastic starch., J. Appl. Polym. Sci. 2004, 93, 1769–1773. 10.1002/app.20628 CASWeb of Science®Google Scholar 13 X. F. MA, J. Yu, J. Feng: Urea and formamide as a mixed plasticizer for thermoplastic starch., Polym. Int. 2004, 53, 1780–1785. 10.1002/pi.1580 CASWeb of Science®Google Scholar 14 A. Pawlak, M. Mucha, Thermogravimetric and FTIR studies of chitosan blends. Thermochim. Acta 2003, 396 (1–2), 153–166. 10.1016/S0040-6031(02)00523-3 CASWeb of Science®Google Scholar 15 J. P. Onteniente, B. Abbès, L. H. Safa, Fully biodegradable lubricated thermoplastic wheat starch: Mechanical and rheological properties of an injection grade. Starch/Stärke 2000, 52, 112–117. 10.1002/1521-379X(200006)52:4<112::AID-STAR112>3.0.CO;2-O CASWeb of Science®Google Scholar 16 A. A. S. Curvelo, A. J. F. de Carvalho, J. A. M. Agnelli: Thermoplastic starch-cellulosic fibers composites: preliminary results. Carbohydr. Polym. 2001, 45, 183–188. 10.1016/S0144-8617(00)00314-3 CASWeb of Science®Google Scholar 17 O. Kazuo, Y. Isao, T. Toshiaki, et al.: Studies on the retrogradation and structural properties of waxy corn starch. Bull. Chem. Soc. Jpn. 1998, 71, 1095–1100. 10.1246/bcsj.71.1095 Web of Science®Google Scholar 18 A. L. M. Smits, F. C. Ruhnau, J. F. G. Vliegenthart, J. J. G. van Soest: Ageing of starch based systems as observed with FT-IR and solid state NMR spectroscopy. Starch/Stärke 1998, 50 (11-12), 478–483. 10.1002/(SICI)1521-379X(199812)50:11/12<478::AID-STAR478>3.0.CO;2-P CASWeb of Science®Google Scholar 19 J. J. G. van Soest, H. Tournois, D. de Wit, J. F. G. Vliegenthart: Short-range structure in (partially) crystalline potato starch determined with attenuated total reflectance Fourier transform infrared spectroscopy, Carbohydr. Res. 1995, 279, 201–214. 10.1016/0008-6215(95)00270-7 CASWeb of Science®Google Scholar 20 J. J. G. van Soest, J. F. G. Vliegenthart: Crystallinity in starch plastics: consequences for material properties. Trends Biotechnol. 1997, 15 (6), 208–213. 10.1016/S0167-7799(97)01021-4 CASPubMedWeb of Science®Google Scholar 21 J. J. G. van Soest, S. H. D. Hulleman, D. de Wit, J. F. G. Vliegenthart: Crystallinity in starch bioplastics. Ind. Crops Prod. 1996, 5, 11–22. 10.1016/0926-6690(95)00048-8 CASWeb of Science®Google Scholar Citing Literature Volume57, Issue10No. 10 October 2005Pages 494-504 ReferencesRelatedInformation