The Effects of Citric Acid on the Properties of Thermoplastic Starch Plasticized by Glycerol

热塑性塑料 甘油 柠檬酸 淀粉 增塑剂 食品科学 化学 高分子科学 材料科学 复合材料 有机化学
作者
Yu Jiugao,Ning Wang,Xiaofei Ma
出处
期刊:Starch-starke [Wiley]
卷期号:57 (10): 494-504 被引量:267
标识
DOI:10.1002/star.200500423
摘要

Starch - StärkeVolume 57, Issue 10 p. 494-504 Research PaperFull Access The Effects of Citric Acid on the Properties of Thermoplastic Starch Plasticized by Glycerol Yu Jiugao, Yu Jiugao School of Science, Tianjin University, Tianjin, ChinaSearch for more papers by this authorWang Ning, Wang Ning School of Science, Tianjin University, Tianjin, ChinaSearch for more papers by this authorMa Xiaofei, Corresponding Author Ma Xiaofei [email protected] School of Science, Tianjin University, Tianjin, ChinaSchool of Science, Tianjin University, Tianjin 300072, China, Phone: +86-022-27401644, Fax: +86-022-27403475Search for more papers by this author Yu Jiugao, Yu Jiugao School of Science, Tianjin University, Tianjin, ChinaSearch for more papers by this authorWang Ning, Wang Ning School of Science, Tianjin University, Tianjin, ChinaSearch for more papers by this authorMa Xiaofei, Corresponding Author Ma Xiaofei [email protected] School of Science, Tianjin University, Tianjin, ChinaSchool of Science, Tianjin University, Tianjin 300072, China, Phone: +86-022-27401644, Fax: +86-022-27403475Search for more papers by this author First published: 30 September 2005 https://doi.org/10.1002/star.200500423Citations: 195AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract The effects of citric acid on the properties of glycerol-plasticized thermoplastic starch (GPTPS) were studied. In the presence of citric acid and glycerol, native cornstarch granules are transferred to a continuous phase as shown by scanning electron microscopy (SEM). As shown by thermogravimetric analysis (TGA), the improvement in thermal stability confirms that the adhesion between citric acid, glycerol, water and starch in TPS was enhanced with the addition of citric acid. It was proven by Fourier transform infrared (FTIR) spectroscopy that citric acid can form stronger hydrogen-bond interactions with starch than glycerol. Both FTIR spectroscopy and X-ray diffractometry of citric acid-modified GPTPS (CATPS) revealed that citric acid can effectively inhibit starch re-crystallization (i.e. retrogradation), because of the strong hydrogen-bond interaction between citric acid and starch. Rheology studies revealed that citric acid can obviously decrease the shear viscosity and improve the fluidity of TPS. Citric acid can also improve the elongation of GPTPS and ameliorate the water resistance of GPTPS at high relative humidities, but decreased the tensile stress. References 1 K. Petersen, N. P. Væggemose, G. Bertelsen, et al.: Potential of biobased materials for food packaging. Trends Food Sci. Technol. 1999, 10, 52–68. 10.1016/S0924-2244(99)00019-9 CASWeb of Science®Google Scholar 2 J. J. G. van Soest, N. Knooren: Influence of glycerol and water content on the structure and properties of extruded starch plastic sheets during aging. J. Appl. Polym. Sci. 1997, 64 (7), 1411–1422. 10.1002/(SICI)1097-4628(19970516)64:7<1411::AID-APP21>3.0.CO;2-Y CASWeb of Science®Google Scholar 3 O. Martin, L. Averous, G. Della Valle: In-line determination of plasticized wheat starch viscoelastic behavior: impact of processing. Carbohydr. Polym. 2003, 53 (2), 169–182. 10.1016/S0144-8617(03)00040-7 CASWeb of Science®Google Scholar 4 A. A. S. Curvelo, A. J. F. De Carvalho, J. A. M. Agnelli, Thermoplastic starch–cellulosic fibers composites: preliminary results. Carbohydr. Polym. 2001, 45, 183–188. 10.1016/S0144-8617(00)00314-3 CASWeb of Science®Google Scholar 5 M. L. Fishman, D. R. Coffin, R. P. Konstance, C. I. Onwulata: Extrusion of pectin/starch blends plasticized with glycerol. Carbohydr. Polym. 2000, 41, 317–325. 10.1016/S0144-8617(99)00117-4 CASWeb of Science®Google Scholar 6 O. Martin, E. Schwach, L. Averous, Y. Couturier: Properties of biodegradable multilayer films based on plasticized wheat starch. Starch/Stärke 2001, 53 (8), 372–380. 10.1002/1521-379X(200108)53:8<372::AID-STAR372>3.0.CO;2-F CASWeb of Science®Google Scholar 7 J. Yu, J. Gao, T. Lin: Biodegradable thermoplastic starch. J. Polym. Sci. 1996, 62, 1491–1494. 10.1002/(SICI)1097-4628(19961128)62:9<1491::AID-APP19>3.0.CO;2-1 CASWeb of Science®Google Scholar 8 A. L. M. Smits, M. Wübbenhorst, P. H. Kruiskamp, J. J. G. van Soest, J. F. G. Vliegenthart, J. van Turnhout: Structure evolution in amylopectin/ethylene glycol mixtures by H-bond formation and phase separation studied with dielectric relaxation spectroscopy. J. Phys. Chem. B 2001, 105 (24), 5630–5636. 10.1021/jp003289f CASWeb of Science®Google Scholar 9 L. Wang, R. L. Shogren, C. Carriere: Preparation and properties of thermoplastic starch-polyester laminate sheets by coextrusion. Polym. Eng. Sci. 2000, 40, 499–506. 10.1002/pen.11182 CASWeb of Science®Google Scholar 10 A. Barret, G. Kaletunc, S. Rosenburg, K. Breslauer: Effect of sucrose on the structure, mechanical strength and thermal properties of corn extrudates. Carbohydr. Polym. 1995, 26, 261–269. 10.1016/0144-8617(95)00024-2 Web of Science®Google Scholar 11 X. F. MA, J. Yu: The effects of plasticizers containing amide groups on the properties of thermoplastic starch. Starch/Stärke 2004, 56 (11), 545–551. 10.1002/star.200300256 CASWeb of Science®Google Scholar 12 X. F. MA, J. Yu, Formamide as the plasticizer for thermoplastic starch., J. Appl. Polym. Sci. 2004, 93, 1769–1773. 10.1002/app.20628 CASWeb of Science®Google Scholar 13 X. F. MA, J. Yu, J. Feng: Urea and formamide as a mixed plasticizer for thermoplastic starch., Polym. Int. 2004, 53, 1780–1785. 10.1002/pi.1580 CASWeb of Science®Google Scholar 14 A. Pawlak, M. Mucha, Thermogravimetric and FTIR studies of chitosan blends. Thermochim. Acta 2003, 396 (1–2), 153–166. 10.1016/S0040-6031(02)00523-3 CASWeb of Science®Google Scholar 15 J. P. Onteniente, B. Abbès, L. H. Safa, Fully biodegradable lubricated thermoplastic wheat starch: Mechanical and rheological properties of an injection grade. Starch/Stärke 2000, 52, 112–117. 10.1002/1521-379X(200006)52:4<112::AID-STAR112>3.0.CO;2-O CASWeb of Science®Google Scholar 16 A. A. S. Curvelo, A. J. F. de Carvalho, J. A. M. Agnelli: Thermoplastic starch-cellulosic fibers composites: preliminary results. Carbohydr. Polym. 2001, 45, 183–188. 10.1016/S0144-8617(00)00314-3 CASWeb of Science®Google Scholar 17 O. Kazuo, Y. Isao, T. Toshiaki, et al.: Studies on the retrogradation and structural properties of waxy corn starch. Bull. Chem. Soc. Jpn. 1998, 71, 1095–1100. 10.1246/bcsj.71.1095 Web of Science®Google Scholar 18 A. L. M. Smits, F. C. Ruhnau, J. F. G. Vliegenthart, J. J. G. van Soest: Ageing of starch based systems as observed with FT-IR and solid state NMR spectroscopy. Starch/Stärke 1998, 50 (11-12), 478–483. 10.1002/(SICI)1521-379X(199812)50:11/12<478::AID-STAR478>3.0.CO;2-P CASWeb of Science®Google Scholar 19 J. J. G. van Soest, H. Tournois, D. de Wit, J. F. G. Vliegenthart: Short-range structure in (partially) crystalline potato starch determined with attenuated total reflectance Fourier transform infrared spectroscopy, Carbohydr. Res. 1995, 279, 201–214. 10.1016/0008-6215(95)00270-7 CASWeb of Science®Google Scholar 20 J. J. G. van Soest, J. F. G. Vliegenthart: Crystallinity in starch plastics: consequences for material properties. Trends Biotechnol. 1997, 15 (6), 208–213. 10.1016/S0167-7799(97)01021-4 CASPubMedWeb of Science®Google Scholar 21 J. J. G. van Soest, S. H. D. Hulleman, D. de Wit, J. F. G. Vliegenthart: Crystallinity in starch bioplastics. Ind. Crops Prod. 1996, 5, 11–22. 10.1016/0926-6690(95)00048-8 CASWeb of Science®Google Scholar Citing Literature Volume57, Issue10No. 10 October 2005Pages 494-504 ReferencesRelatedInformation
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优雅松鼠发布了新的文献求助10
刚刚
英俊的铭应助Lynn采纳,获得10
1秒前
闻屿发布了新的文献求助10
1秒前
大白发布了新的文献求助10
2秒前
3秒前
冰河完成签到,获得积分10
3秒前
YangC发布了新的文献求助10
4秒前
在水一方应助斯文明杰采纳,获得10
4秒前
7秒前
李健的小迷弟应助大白采纳,获得10
7秒前
8秒前
十七发布了新的文献求助10
8秒前
云宇发布了新的文献求助10
8秒前
8秒前
执着瓜6完成签到,获得积分10
9秒前
WuYR关注了科研通微信公众号
10秒前
戚雅柔完成签到 ,获得积分10
10秒前
传奇3应助优雅松鼠采纳,获得10
10秒前
斯文败类应助酷酷连虎采纳,获得10
11秒前
12秒前
小景毕业完成签到,获得积分10
13秒前
枫尽完成签到,获得积分10
13秒前
13秒前
13秒前
14秒前
keke完成签到,获得积分20
15秒前
自由的厉发布了新的文献求助10
15秒前
wzz发布了新的文献求助10
16秒前
萌仔防守发布了新的文献求助10
16秒前
zy完成签到 ,获得积分10
16秒前
斯文明杰发布了新的文献求助10
16秒前
makunyi完成签到 ,获得积分10
17秒前
华仔应助阿珩采纳,获得10
17秒前
SSS关闭了SSS文献求助
18秒前
希希今天学习了吗完成签到 ,获得积分10
18秒前
情怀应助可爱九九鱼采纳,获得10
19秒前
谭阿面发布了新的文献求助10
19秒前
aixiaoming0503完成签到,获得积分10
19秒前
火星上的手链完成签到,获得积分10
20秒前
21秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149519
求助须知:如何正确求助?哪些是违规求助? 2800571
关于积分的说明 7840676
捐赠科研通 2458112
什么是DOI,文献DOI怎么找? 1308279
科研通“疑难数据库(出版商)”最低求助积分说明 628471
版权声明 601706