亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Calcium Hydroxide Membrane As a Separator to Immobilize Zincate Ions in Secondary Alkaline Batteries

锌酸盐 碱性电池 分离器(采油) 无机化学 氢氧化物 氢氧化钙 化学 电极 材料科学 化学工程 电解质 有机化学 物理 工程类 物理化学 热力学
作者
Jinchao Huang,Gautam Ganapati Yadav,Joshua W. Gallaway,Michael Nyce,Sanjoy Banerjee
出处
期刊:Meeting abstracts 卷期号:MA2016-01 (5): 490-490
标识
DOI:10.1149/ma2016-01/5/490
摘要

The rechargeable alkaline zinc/manganese dioxide battery is an attractive candidate for large-scale energy storage, as it is inexpensive, safe, and able to provide high energy density. Recent commercialization success with the Zn/MnO 2 rechargeable batteries has been possible by limiting the depth of discharge (DOD) 1 . The reasons for the low DOD are tied to the inherent material properties of MnO 2 and Zn, as well as the poisoning of the MnO 2 cathodes by zincate ions. With the formation of an electrochemically inactive material hetaerolite (ZnMn 2 O 4 ), zincate poisoning has become a crucial factor that limits the rechargeability of the battery 2 . In order to immobilize the zincate ions, a new inorganic separator has been invented. The inorganic material used is calcium hydroxide, which has been reported to be an effective additive in Zn electrodes to mitigate the shape change problem 3 . Ca(OH) 2 is able to localize the zincate ions by forming an insoluble complex calcium zincate (CaZn 2 (OH) 6 •2H 2 O). The formation and decomposition kinetics have been well studied 4,5 . However, the addition of Ca(OH) 2 sacrifices the electrode’s conductivity, and its low density adds to the thickness of the electrode. Therefore, in this work a separator sheet was fabricated out of Ca(OH) 2 , instead of adding it directly to the electrode. By doing this, its negative effect on the electrode could be avoided, while its function as a “zincate reservoir” was kept. The lab-fabricated Ca(OH) 2 sheet has been characterized in electrolytes of different KOH concentrations. Its properties have been compared with those of widely applied commercial separators, including Celgard 5550 (Celgard, LLC, USA), Freudenberg FSWR104 (Freuden-berg Non-wovens LP), and Cellophane 350PØØ (Innovia Films Company). Results are shown in Table 1. The permeabilities of zincate through different separators were tested in prismatic cells during battery cycling. We found that at the end of the first discharge, the Ca(OH) 2 membrane, compared with other tested membranes, was able to reduce the amount of zincate ions in the cathode side by around 50%. After running for 20 cycles at full one-electron DOD of MnO 2 , the MnO 2 electrodes were characterized by XRD and EDS. The XRD patterns (Fig.1) clearly showed that when normal commercial separators were used, the reflections corresponding to the MnO 2 phase vanished and new reflections belonged to hausmannite (Mn 3 O 4 ) or hetaerolite (ZnMn 2 O 4 ) occurred after 20 cycles. However, in the cell with Ca(OH) 2 membrane, no noticeable change could be found, indicating little material phase change. The EDS elemental analysis results on the MnO 2 electrodes’ surfaces and cross-sectional areas also supported this conclusion, as the atomic ratio of Zn to Mn was only 0.05 when Ca(OH) 2 membrane was applied, while for those without Ca(OH) 2 membranes, a value close to 0.5 was found. The Ca(OH) 2 membrane has also been applied in a battery with lab-modified MnO 2 electrodes. The battery was able to achieve more than 800 cycles at 80% of the 2-electron capacity, where the problem of zincate contamination is more severe. The curves of specific discharge capacity change are plotted in Fig.2. We can see that performance of the cell with Ca(OH) 2 membranes is much better compared with the other two cells. With such a high retention of the second electron capacity being accessible, the Zn/MnO 2 battery has achieved a major breakthrough. [1] N.D. Ingale, J.W. Gallaway, M. Nyce, A. Couzis, S. Banerjee, J. Power Sources 276, 7 (2015) [2] J. W. Gallaway, M. Menard, B. Hertzberg, Z. Zhong, M. Croft, L. A. Sviridov, D. E. Turney, S. Banerjee, D. A. Steingart, and C. K. Erdonmez, J. Electrochem. Soc. , 162, 1, A162 (2015) [3] R. Jain, T. C. Adler, F. R. McLarnon, E. J. Cairns, J. Appl. Electrochem , 22, 1039 (1992) [4] Y. M. Wang, G. Wainwright, J. Electrochem. Soc. , 133, 9, 1869 (1986) [5] Y. M. Wang, J. Electrochem. Soc. , 137, 9, 2800 (1990) Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12秒前
wangqi发布了新的文献求助10
16秒前
魔叶树完成签到 ,获得积分0
20秒前
天天快乐应助wangqi采纳,获得10
22秒前
乐乐应助加菲丰丰采纳,获得10
24秒前
二哈啃海棠完成签到,获得积分10
25秒前
26秒前
细心怜寒发布了新的文献求助10
31秒前
fang驳回了ss25应助
37秒前
Luminous应助细心怜寒采纳,获得10
38秒前
40秒前
白华苍松发布了新的文献求助10
48秒前
明亮的代灵完成签到 ,获得积分10
55秒前
1分钟前
1分钟前
1分钟前
1分钟前
asd应助科研通管家采纳,获得50
1分钟前
SSSSCCCCIIII完成签到,获得积分10
1分钟前
科研小白发布了新的文献求助10
1分钟前
jerry完成签到,获得积分10
1分钟前
传奇3应助科研小白采纳,获得10
1分钟前
fang完成签到,获得积分20
1分钟前
Ganlou应助加菲丰丰采纳,获得10
1分钟前
Byron完成签到,获得积分10
1分钟前
nadia完成签到,获得积分10
1分钟前
霍小美完成签到,获得积分10
1分钟前
shawn发布了新的文献求助10
2分钟前
siuu发布了新的文献求助10
2分钟前
shawn完成签到,获得积分10
2分钟前
早晚完成签到 ,获得积分10
2分钟前
2分钟前
CC0113发布了新的文献求助300
2分钟前
皮老师发布了新的文献求助20
2分钟前
iTaciturne完成签到,获得积分10
2分钟前
3分钟前
3分钟前
科研小白发布了新的文献求助10
3分钟前
英俊的铭应助科研通管家采纳,获得10
3分钟前
wanci应助科研通管家采纳,获得10
3分钟前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330358
求助须知:如何正确求助?哪些是违规求助? 2959976
关于积分的说明 8597967
捐赠科研通 2638593
什么是DOI,文献DOI怎么找? 1444444
科研通“疑难数据库(出版商)”最低求助积分说明 669106
邀请新用户注册赠送积分活动 656727