亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Calcium Hydroxide Membrane As a Separator to Immobilize Zincate Ions in Secondary Alkaline Batteries

锌酸盐 碱性电池 分离器(采油) 无机化学 氢氧化物 氢氧化钙 化学 电极 材料科学 化学工程 电解质 有机化学 物理 工程类 物理化学 热力学
作者
Jinchao Huang,Gautam Ganapati Yadav,Joshua W. Gallaway,Michael Nyce,Sanjoy Banerjee
出处
期刊:Meeting abstracts 卷期号:MA2016-01 (5): 490-490
标识
DOI:10.1149/ma2016-01/5/490
摘要

The rechargeable alkaline zinc/manganese dioxide battery is an attractive candidate for large-scale energy storage, as it is inexpensive, safe, and able to provide high energy density. Recent commercialization success with the Zn/MnO 2 rechargeable batteries has been possible by limiting the depth of discharge (DOD) 1 . The reasons for the low DOD are tied to the inherent material properties of MnO 2 and Zn, as well as the poisoning of the MnO 2 cathodes by zincate ions. With the formation of an electrochemically inactive material hetaerolite (ZnMn 2 O 4 ), zincate poisoning has become a crucial factor that limits the rechargeability of the battery 2 . In order to immobilize the zincate ions, a new inorganic separator has been invented. The inorganic material used is calcium hydroxide, which has been reported to be an effective additive in Zn electrodes to mitigate the shape change problem 3 . Ca(OH) 2 is able to localize the zincate ions by forming an insoluble complex calcium zincate (CaZn 2 (OH) 6 •2H 2 O). The formation and decomposition kinetics have been well studied 4,5 . However, the addition of Ca(OH) 2 sacrifices the electrode’s conductivity, and its low density adds to the thickness of the electrode. Therefore, in this work a separator sheet was fabricated out of Ca(OH) 2 , instead of adding it directly to the electrode. By doing this, its negative effect on the electrode could be avoided, while its function as a “zincate reservoir” was kept. The lab-fabricated Ca(OH) 2 sheet has been characterized in electrolytes of different KOH concentrations. Its properties have been compared with those of widely applied commercial separators, including Celgard 5550 (Celgard, LLC, USA), Freudenberg FSWR104 (Freuden-berg Non-wovens LP), and Cellophane 350PØØ (Innovia Films Company). Results are shown in Table 1. The permeabilities of zincate through different separators were tested in prismatic cells during battery cycling. We found that at the end of the first discharge, the Ca(OH) 2 membrane, compared with other tested membranes, was able to reduce the amount of zincate ions in the cathode side by around 50%. After running for 20 cycles at full one-electron DOD of MnO 2 , the MnO 2 electrodes were characterized by XRD and EDS. The XRD patterns (Fig.1) clearly showed that when normal commercial separators were used, the reflections corresponding to the MnO 2 phase vanished and new reflections belonged to hausmannite (Mn 3 O 4 ) or hetaerolite (ZnMn 2 O 4 ) occurred after 20 cycles. However, in the cell with Ca(OH) 2 membrane, no noticeable change could be found, indicating little material phase change. The EDS elemental analysis results on the MnO 2 electrodes’ surfaces and cross-sectional areas also supported this conclusion, as the atomic ratio of Zn to Mn was only 0.05 when Ca(OH) 2 membrane was applied, while for those without Ca(OH) 2 membranes, a value close to 0.5 was found. The Ca(OH) 2 membrane has also been applied in a battery with lab-modified MnO 2 electrodes. The battery was able to achieve more than 800 cycles at 80% of the 2-electron capacity, where the problem of zincate contamination is more severe. The curves of specific discharge capacity change are plotted in Fig.2. We can see that performance of the cell with Ca(OH) 2 membranes is much better compared with the other two cells. With such a high retention of the second electron capacity being accessible, the Zn/MnO 2 battery has achieved a major breakthrough. [1] N.D. Ingale, J.W. Gallaway, M. Nyce, A. Couzis, S. Banerjee, J. Power Sources 276, 7 (2015) [2] J. W. Gallaway, M. Menard, B. Hertzberg, Z. Zhong, M. Croft, L. A. Sviridov, D. E. Turney, S. Banerjee, D. A. Steingart, and C. K. Erdonmez, J. Electrochem. Soc. , 162, 1, A162 (2015) [3] R. Jain, T. C. Adler, F. R. McLarnon, E. J. Cairns, J. Appl. Electrochem , 22, 1039 (1992) [4] Y. M. Wang, G. Wainwright, J. Electrochem. Soc. , 133, 9, 1869 (1986) [5] Y. M. Wang, J. Electrochem. Soc. , 137, 9, 2800 (1990) Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
43秒前
gkhsdvkb发布了新的文献求助10
47秒前
爆米花应助科研通管家采纳,获得10
54秒前
爆米花应助科研通管家采纳,获得10
54秒前
ling完成签到,获得积分10
1分钟前
ramsey33完成签到 ,获得积分10
1分钟前
慕青应助聪慧的无剑采纳,获得10
1分钟前
Orange应助烟消云散采纳,获得10
1分钟前
1分钟前
饼饼发布了新的文献求助10
1分钟前
饼饼发布了新的文献求助10
1分钟前
1分钟前
满意谷波发布了新的文献求助10
1分钟前
上官若男应助满意谷波采纳,获得10
1分钟前
ys完成签到 ,获得积分10
2分钟前
ZepHyR发布了新的文献求助10
2分钟前
李爱国应助jyy采纳,获得30
2分钟前
ZepHyR完成签到,获得积分10
2分钟前
东山道友完成签到 ,获得积分10
2分钟前
3分钟前
满意谷波发布了新的文献求助10
3分钟前
Yiu完成签到,获得积分20
3分钟前
RADIUM三餐都要吃肉完成签到,获得积分10
3分钟前
科研通AI6.1应助liudy采纳,获得10
4分钟前
环走鱼尾纹完成签到 ,获得积分10
4分钟前
Orange应助科研通管家采纳,获得10
4分钟前
完美世界应助饼饼采纳,获得10
4分钟前
5分钟前
饼饼发布了新的文献求助10
5分钟前
5分钟前
烟消云散发布了新的文献求助10
5分钟前
DChen完成签到 ,获得积分10
5分钟前
Akim应助饼饼采纳,获得10
6分钟前
6分钟前
liudy发布了新的文献求助10
6分钟前
Gryff完成签到 ,获得积分10
6分钟前
7分钟前
饼饼发布了新的文献求助10
7分钟前
快快快快快快快快快完成签到 ,获得积分10
8分钟前
忧郁的芒果干完成签到 ,获得积分10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Campbell Walsh Wein Urology 3-Volume Set 12th Edition 200
Three-dimensional virtual model for robot-assisted partial nephrectomy in totally endophytic renal tumors: a propensity-score matching analysis with a control group 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5865852
求助须知:如何正确求助?哪些是违规求助? 6416019
关于积分的说明 15653909
捐赠科研通 4980670
什么是DOI,文献DOI怎么找? 2686258
邀请新用户注册赠送积分活动 1629224
关于科研通互助平台的介绍 1587130