阿利效应
相图
人口
极限环
数学
霍普夫分叉
同宿轨道
分叉
捕食
极限(数学)
统计物理学
动力学(音乐)
应用数学
人口模型
博格达诺夫-塔肯分岔
控制理论(社会学)
数学分析
物理
生态学
生物
经济
非线性系统
人口学
社会学
管理
量子力学
控制(管理)
声学
作者
Yujing Gao,Bingtuan Li
出处
期刊:Discrete and Continuous Dynamical Systems-series B
[American Institute of Mathematical Sciences]
日期:2013-01-01
卷期号:18 (9): 2283-2313
被引量:16
标识
DOI:10.3934/dcdsb.2013.18.2283
摘要
A ratio-dependent predator-prey model with a strong Allee effectin prey is studied. We show that the model has a Bogdanov-Takensbifurcation that is associated with a catastrophic crash of thepredator population. Our analysis indicates that an unstable limitcycle bifurcates from a Hopf bifurcation, and it disappears due toa homoclinic bifurcation which can lead to different patterns ofglobal population dynamics in the model. We study the heteroclinicorbits and determine all possible phase portraits when theBogdanov-Takens bifurcation occurs. We also provide the conditionsfor nonexistence of limit cycle under which the global dynamics ofthe model can be determined.
科研通智能强力驱动
Strongly Powered by AbleSci AI