电容
电压
材料科学
极化(电化学)
热的
电池(电)
近似误差
频域
低频
机械
核工程
热力学
化学
电极
电气工程
计算机科学
工程类
物理
功率(物理)
物理化学
电信
计算机视觉
算法
作者
Jiuchun Jiang,Haijun Ruan,Bingxiang Sun,Weige Zhang,Wenzhong Gao,Le Yi Wang,Linjing Zhang
出处
期刊:Applied Energy
[Elsevier]
日期:2016-06-13
卷期号:177: 804-816
被引量:114
标识
DOI:10.1016/j.apenergy.2016.05.153
摘要
A low-temperature electro-thermal coupled model, which is based on the electrochemical mechanism, is developed to accurately capture both electrical and thermal behaviors of batteries. Activation energies reveal that temperature dependence of resistances is greater than that of capacitances. The influence of frequency on polarization voltage and irreversible heat is discussed, and frequency dependence of polarization resistance and capacitance is obtained. Based on the frequency-dependent equation, a reduced low-temperature electro-thermal coupled model is proposed and experimentally validated under different temperature, frequency and amplitude conditions. Simulation results exhibit good agreement with experimental data, where the maximum relative voltage error and temperature error are below 2.65% and 1.79 °C, respectively. The reduced model is demonstrated to have almost the same accuracy as the original model and require a lower computational effort. The effectiveness and adaptability of the proposed methodology for model reduction is verified using batteries with three different cathode materials from different manufacturers. The reduced model, thanks to its high accuracy and simplicity, provides a promising candidate for development of rapid internal heating and optimal charging strategies at low temperature, and for evaluation of the state of battery health in on-board battery management system.
科研通智能强力驱动
Strongly Powered by AbleSci AI