凝聚态物理
磁电阻
各向异性
拓扑绝缘体
布里渊区
电阻率和电导率
电子能带结构
材料科学
化学
物理
光学
磁场
量子力学
作者
Gang Qiu,Yuchen Du,Adam Charnas,Hong Zhou,S. Jin,Zhe Luo,Dmitry Zemlyanov,Xianfan Xu,Gary J. Cheng,Peide D. Ye
出处
期刊:Nano Letters
[American Chemical Society]
日期:2016-11-23
卷期号:16 (12): 7364-7369
被引量:88
标识
DOI:10.1021/acs.nanolett.6b02629
摘要
Transition metal pentatelluride ZrTe5 is a versatile material in condensed-matter physics and has been intensively studied since the 1980s. The most fascinating feature of ZrTe5 is that it is a 3D Dirac semimetal which has linear energy dispersion in all three dimensions in momentum space. Structure-wise, ZrTe5 is a layered material held together by weak interlayer van der Waals force. The combination of its unique band structure and 2D atomic structure provides a fertile ground for more potential exotic physical phenomena in ZrTe5 related to 3D Dirac semimentals. However, the physical properties of its few-layer form have yet to be thoroughly explored. Here we report strong optical and electrical in-plane anisotropy of mechanically exfoliated few-layer ZrTe5. Raman spectroscopy shows a significant intensity change with sample orientations, and the behavior of angle-resolved phonon modes at the Γ point is explained by theoretical calculations. DC conductance measurement indicates a 50% of difference along different in-plane directions. The diminishing of resistivity anomaly in few-layer samples indicates the evolution of band structure with a reduced thickness. A low-temperature Hall experiment sheds light on more intrinsic anisotropic electrical transport, with a hole mobility of 3000 and 1500 cm2/V·s along the a-axis and c-axis, respectively. Pronounced quantum oscillations in magnetoresistance are observed at low temperatures with the highest electron mobility up to 44 000 cm2/V·s.
科研通智能强力驱动
Strongly Powered by AbleSci AI